[FreeTutorials.Us] Udemy - The Data Science Course 2018 Complete Data Science Bootcamp
File List
- 11. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.mp4 159.5 MB
- 33. Part 5 Mathematics/16. Why is Linear Algebra Useful.mp4 144.3 MB
- 5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.mp4 138.3 MB
- 3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 126.9 MB
- 5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.mp4 125.2 MB
- 5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.mp4 123.5 MB
- 15. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.mp4 113.2 MB
- 2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.mp4 109.0 MB
- 6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.mp4 103.5 MB
- 44. Deep Learning - Business Case Example/4. Business Case Preprocessing.mp4 103.4 MB
- 14. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.mp4 102.7 MB
- 5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.mp4 99.3 MB
- 15. Statistics - Hypothesis Testing/1. The Null vs Alternative Hypothesis.mp4 92.1 MB
- 5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.mp4 89.9 MB
- 44. Deep Learning - Business Case Example/1. Business Case Getting acquainted with the dataset.mp4 87.7 MB
- 29. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.mp4 86.5 MB
- 2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.mp4 81.4 MB
- 4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.mp4 81.2 MB
- 13. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.mp4 78.2 MB
- 44. Deep Learning - Business Case Example/6. Creating a Data Provider.mp4 76.3 MB
- 5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.mp4 75.5 MB
- 17. Part 3 Introduction to Python/3. Why Python.mp4 75.1 MB
- 31. Advanced Statistical Methods - K-Means Clustering/10. How is Clustering Useful.mp4 74.5 MB
- 8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.mp4 72.8 MB
- 10. Statistics - Descriptive Statistics/1. Types of Data.mp4 72.5 MB
- 30. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.mp4 71.5 MB
- 13. Statistics - Inferential Statistics Confidence Intervals/11. Confidence intervals. Two means. Dependent samples.mp4 70.5 MB
- 16. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.mp4 69.5 MB
- 2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.mp4 67.7 MB
- 2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 64.5 MB
- 12. Statistics - Inferential Statistics Fundamentals/8. Central Limit Theorem.mp4 62.9 MB
- 43. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Results and Testing.mp4 62.8 MB
- 1. Part 1 Introduction/2. What Does the Course Cover.mp4 62.3 MB
- 12. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.mp4 61.6 MB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).mp4 61.1 MB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.mp4 59.4 MB
- 13. Statistics - Inferential Statistics Confidence Intervals/9. Margin of Error.mp4 59.1 MB
- 45. Deep Learning - Conclusion/3. An overview of CNNs.mp4 58.8 MB
- 17. Part 3 Introduction to Python/1. Introduction to Programming.mp4 58.5 MB
- 9. Part 2 Statistics/1. Population and Sample.mp4 58.1 MB
- 27. Advanced Statistical Methods - Linear regression/1. The Linear Regression Model.mp4 57.4 MB
- 43. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Model Outline.mp4 56.4 MB
- 31. Advanced Statistical Methods - K-Means Clustering/9. Market Segmentation with Cluster Analysis (Part 2).mp4 56.1 MB
- 15. Statistics - Hypothesis Testing/10. p-value.mp4 55.9 MB
- 28. Advanced Statistical Methods - Multiple Linear Regression/17. Dealing with Categorical Data - Dummy Variables.mp4 55.7 MB
- 35. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.mp4 55.6 MB
- 28. Advanced Statistical Methods - Multiple Linear Regression/2. Adjusted R-Squared.mp4 54.8 MB
- 17. Part 3 Introduction to Python/7. Installing Python and Jupyter.mp4 54.4 MB
- 10. Statistics - Descriptive Statistics/3. Levels of Measurement.mp4 54.4 MB
- 7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.mp4 54.4 MB
- 15. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.mp4 54.2 MB
- 2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.mp4 53.6 MB
- 30. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.mp4 53.4 MB
- 44. Deep Learning - Business Case Example/7. Business Case Model Outline.mp4 53.1 MB
- 31. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.mp4 51.8 MB
- 42. Deep Learning - Preprocessing/3. Standardization.mp4 51.0 MB
- 10. Statistics - Descriptive Statistics/17. Variance.mp4 51.0 MB
- 15. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.mp4 50.4 MB
- 13. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.mp4 50.0 MB
- 12. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.mp4 49.9 MB
- 33. Part 5 Mathematics/5. Linear Algebra and Geometry.mp4 49.8 MB
- 27. Advanced Statistical Methods - Linear regression/11. Decomposition of Variability.mp4 49.7 MB
- 33. Part 5 Mathematics/15. Dot Product of Matrices.mp4 49.4 MB
- 1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.mp4 49.0 MB
- 12. Statistics - Inferential Statistics Fundamentals/11. Estimators and Estimates.mp4 47.8 MB
- 37. Deep Learning - TensorFlow Introduction/3. TensorFlow Outline and Logic.mp4 47.7 MB
- 43. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Learning.mp4 46.7 MB
- 10. Statistics - Descriptive Statistics/19. Standard Deviation and Coefficient of Variation.mp4 45.1 MB
- 35. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.mp4 45.1 MB
- 45. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.mp4 44.8 MB
- 27. Advanced Statistical Methods - Linear regression/10. How to Interpret the Regression Table.mp4 44.6 MB
- 32. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.mp4 44.6 MB
- 27. Advanced Statistical Methods - Linear regression/7. First Regression in Python.mp4 44.6 MB
- 17. Part 3 Introduction to Python/5. Why Jupyter.mp4 44.3 MB
- 31. Advanced Statistical Methods - K-Means Clustering/4. How to Choose the Number of Clusters.mp4 44.1 MB
- 15. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.mp4 43.9 MB
- 43. Deep Learning - Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.mp4 43.9 MB
- 31. Advanced Statistical Methods - K-Means Clustering/8. Market Segmentation with Cluster Analysis (Part 1).mp4 43.0 MB
- 35. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.mp4 42.9 MB
- 5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.mp4 42.8 MB
- 28. Advanced Statistical Methods - Multiple Linear Regression/12. A3 Normality and Homoscedasticity.mp4 42.7 MB
- 44. Deep Learning - Business Case Example/8. Business Case Optimization.mp4 41.5 MB
- 27. Advanced Statistical Methods - Linear regression/14. R-Squared.mp4 41.0 MB
- 27. Advanced Statistical Methods - Linear regression/6. Python Packages Installation.mp4 40.6 MB
- 15. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.mp4 40.2 MB
- 10. Statistics - Descriptive Statistics/11. Cross Table and Scatter Plot.mp4 39.8 MB
- 45. Deep Learning - Conclusion/1. Summary of What You Learned.mp4 39.8 MB
- 35. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.mp4 39.4 MB
- 44. Deep Learning - Business Case Example/3. The Importance of Working with a Balanced Dataset.mp4 39.4 MB
- 37. Deep Learning - TensorFlow Introduction/6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 38.5 MB
- 10. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.mp4 38.5 MB
- 29. Advanced Statistical Methods - Logistic Regression/8. Binary Predictors in a Logistic Regression.mp4 38.4 MB
- 35. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.mp4 38.3 MB
- 33. Part 5 Mathematics/13. Transpose of a Matrix.mp4 38.1 MB
- 31. Advanced Statistical Methods - K-Means Clustering/5. Pros and Cons of K-Means Clustering.mp4 37.7 MB
- 37. Deep Learning - TensorFlow Introduction/8. Basic NN Example with TF Model Output.mp4 37.4 MB
- 35. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.mp4 37.2 MB
- 10. Statistics - Descriptive Statistics/13. Mean, median and mode.mp4 37.1 MB
- 5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).mp4 36.8 MB
- 44. Deep Learning - Business Case Example/11. Business Case A Comment on the Homework.mp4 36.4 MB
- 15. Statistics - Hypothesis Testing/17. Test for the mean. Independent samples (Part 2).mp4 36.4 MB
- 30. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.mp4 36.2 MB
- 28. Advanced Statistical Methods - Multiple Linear Regression/10. A2 No Endogeneity.mp4 35.7 MB
- 13. Statistics - Inferential Statistics Confidence Intervals/5. Student's T Distribution.mp4 35.4 MB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.mp4 35.0 MB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).mp4 34.9 MB
- 29. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.mp4 34.7 MB
- 33. Part 5 Mathematics/3. Scalars and Vectors.mp4 33.8 MB
- 25. Python - Advanced Python Tools/1. Object Oriented Programming.mp4 33.6 MB
- 33. Part 5 Mathematics/1. What is a matrix.mp4 33.6 MB
- 21. Python - Conditional Statements/4. The ELIF Statement.mp4 33.2 MB
- 29. Advanced Statistical Methods - Logistic Regression/9. Calculating the Accuracy of the Model.mp4 32.9 MB
- 39. Deep Learning - Overfitting/3. What is Validation.mp4 32.7 MB
- 33. Part 5 Mathematics/10. Addition and Subtraction of Matrices.mp4 32.6 MB
- 37. Deep Learning - TensorFlow Introduction/7. Basic NN Example with TF Loss Function and Gradient Descent.mp4 32.5 MB
- 29. Advanced Statistical Methods - Logistic Regression/7. What do the Odds Actually Mean.mp4 32.3 MB
- 29. Advanced Statistical Methods - Logistic Regression/11. Testing the Model.mp4 32.3 MB
- 13. Statistics - Inferential Statistics Confidence Intervals/7. Confidence Intervals; Population Variance Unknown; t-score.mp4 32.2 MB
- 28. Advanced Statistical Methods - Multiple Linear Regression/13. A4 No Autocorrelation.mp4 31.5 MB
- 34. Part 6 Deep Learning/1. What to Expect from this Part.mp4 31.1 MB
- 39. Deep Learning - Overfitting/1. What is Overfitting.mp4 31.1 MB
- 23. Python - Sequences/5. List Slicing.mp4 30.8 MB
- 18. Python - Variables and Data Types/5. Python Strings.mp4 30.8 MB
- 17. Part 3 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.mp4 30.6 MB
- 29. Advanced Statistical Methods - Logistic Regression/6. Understanding Logistic Regression Tables.mp4 30.5 MB
- 31. Advanced Statistical Methods - K-Means Clustering/6. To Standardize or to not Standardize.mp4 30.1 MB
- 20. Python - Other Python Operators/3. Logical and Identity Operators.mp4 30.1 MB
- 15. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).mp4 30.0 MB
- 5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.mp4 29.9 MB
- 32. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.mp4 29.6 MB
- 10. Statistics - Descriptive Statistics/23. Correlation Coefficient.mp4 29.6 MB
- 5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).mp4 29.5 MB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.mp4 29.5 MB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 29.1 MB
- 32. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.mp4 29.1 MB
- 42. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.mp4 29.0 MB
- 13. Statistics - Inferential Statistics Confidence Intervals/13. Confidence intervals. Two means. Independent samples (Part 1).mp4 28.8 MB
- 28. Advanced Statistical Methods - Multiple Linear Regression/15. A5 No Multicollinearity.mp4 28.7 MB
- 35. Deep Learning - Introduction to Neural Networks/3. Training the Model.mp4 28.7 MB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.mp4 28.7 MB
- 35. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).mp4 28.4 MB
- 27. Advanced Statistical Methods - Linear regression/13. What is the OLS.mp4 28.3 MB
- 42. Deep Learning - Preprocessing/1. Preprocessing Introduction.mp4 27.8 MB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.mp4 27.7 MB
- 10. Statistics - Descriptive Statistics/21. Covariance.mp4 27.5 MB
- 31. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.mp4 27.3 MB
- 29. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.mp4 27.1 MB
- 13. Statistics - Inferential Statistics Confidence Intervals/15. Confidence intervals. Two means. Independent samples (Part 2).mp4 26.8 MB
- 18. Python - Variables and Data Types/1. Variables.mp4 26.6 MB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).mp4 26.3 MB
- 33. Part 5 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.mp4 26.1 MB
- 10. Statistics - Descriptive Statistics/7. Numerical Variables - Frequency Distribution Table.mp4 26.0 MB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.mp4 25.9 MB
- 43. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.mp4 25.9 MB
- 44. Deep Learning - Business Case Example/9. Business Case Interpretation.mp4 25.7 MB
- 45. Deep Learning - Conclusion/5. An Overview of RNNs.mp4 25.3 MB
- 39. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.mp4 25.2 MB
- 35. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.mp4 25.1 MB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.mp4 25.1 MB
- 39. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.mp4 25.1 MB
- 23. Python - Sequences/7. Dictionaries.mp4 25.0 MB
- 28. Advanced Statistical Methods - Multiple Linear Regression/19. Making Predictions with the Linear Regression.mp4 24.7 MB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).mp4 24.4 MB
- 39. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.mp4 24.2 MB
- 33. Part 5 Mathematics/14. Dot Product.mp4 24.0 MB
- 22. Python - Python Functions/2. How to Create a Function with a Parameter.mp4 23.9 MB
- 35. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.mp4 23.3 MB
- 29. Advanced Statistical Methods - Logistic Regression/5. An Invaluable Coding Tip.mp4 23.1 MB
- 12. Statistics - Inferential Statistics Fundamentals/10. Standard error.mp4 22.8 MB
- 35. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.mp4 22.6 MB
- 43. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.mp4 22.6 MB
- 33. Part 5 Mathematics/8. What is a Tensor.mp4 22.5 MB
- 12. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.mp4 22.5 MB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).mp4 22.4 MB
- 29. Advanced Statistical Methods - Logistic Regression/10. Underfitting and Overfitting.mp4 22.3 MB
- 5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.mp4 22.0 MB
- 22. Python - Python Functions/7. Built-in Functions in Python.mp4 22.0 MB
- 23. Python - Sequences/1. Lists.mp4 22.0 MB
- 23. Python - Sequences/3. Using Methods.mp4 22.0 MB
- 28. Advanced Statistical Methods - Multiple Linear Regression/6. OLS Assumptions.mp4 21.8 MB
- 40. Deep Learning - Initialization/1. What is Initialization.mp4 21.8 MB
- 28. Advanced Statistical Methods - Multiple Linear Regression/1. Multiple Linear Regression.mp4 21.5 MB
- 31. Advanced Statistical Methods - K-Means Clustering/3. Clustering Categorical Data.mp4 21.2 MB
- 39. Deep Learning - Overfitting/5. N-Fold Cross Validation.mp4 20.7 MB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).mp4 20.6 MB
- 37. Deep Learning - TensorFlow Introduction/5. Types of File Formats, supporting Tensors.mp4 20.3 MB
- 45. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.mp4 20.1 MB
- 13. Statistics - Inferential Statistics Confidence Intervals/17. Confidence intervals. Two means. Independent samples (Part 3).mp4 19.9 MB
- 25. Python - Advanced Python Tools/7. Importing Modules in Python.mp4 19.9 MB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.mp4 19.5 MB
- 10. Statistics - Descriptive Statistics/15. Skewness.mp4 19.4 MB
- 19. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.mp4 18.9 MB
- 43. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Relevant Packages.mp4 18.9 MB
- 42. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.mp4 18.6 MB
- 25. Python - Advanced Python Tools/5. What is the Standard Library.mp4 18.0 MB
- 35. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.mp4 17.9 MB
- 43. Deep Learning - Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.mp4 17.8 MB
- 37. Deep Learning - TensorFlow Introduction/4. Actual Introduction to TensorFlow.mp4 17.4 MB
- 26. Part 4 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.mp4 17.3 MB
- 40. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 17.1 MB
- 29. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.mp4 17.1 MB
- 18. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.mp4 17.1 MB
- 24. Python - Iterations/8. How to Iterate over Dictionaries.mp4 17.0 MB
- 23. Python - Sequences/6. Tuples.mp4 16.7 MB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.mp4 16.4 MB
- 28. Advanced Statistical Methods - Multiple Linear Regression/5. Test for Significance of the Model (F-Test).mp4 16.4 MB
- 24. Python - Iterations/6. Conditional Statements and Loops.mp4 16.1 MB
- 22. Python - Python Functions/5. Conditional Statements and Functions.mp4 15.7 MB
- 12. Statistics - Inferential Statistics Fundamentals/1. Introduction.mp4 15.5 MB
- 24. Python - Iterations/3. While Loops and Incrementing.mp4 15.4 MB
- 22. Python - Python Functions/3. Defining a Function in Python - Part II.mp4 14.8 MB
- 27. Advanced Statistical Methods - Linear regression/3. Correlation vs Regression.mp4 14.7 MB
- 37. Deep Learning - TensorFlow Introduction/1. How to Install TensorFlow.mp4 14.6 MB
- 30. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.mp4 14.5 MB
- 40. Deep Learning - Initialization/2. Types of Simple Initializations.mp4 14.3 MB
- 17. Part 3 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 13.8 MB
- 10. Statistics - Descriptive Statistics/9. The Histogram.mp4 13.8 MB
- 21. Python - Conditional Statements/1. The IF Statement.mp4 13.6 MB
- 21. Python - Conditional Statements/3. The ELSE Statement.mp4 13.6 MB
- 43. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.mp4 12.9 MB
- 28. Advanced Statistical Methods - Multiple Linear Regression/8. A1 Linearity.mp4 12.6 MB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.mp4 12.5 MB
- 27. Advanced Statistical Methods - Linear regression/9. Using Seaborn for Graphs.mp4 12.2 MB
- 44. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.mp4 12.2 MB
- 42. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.mp4 11.8 MB
- 24. Python - Iterations/1. For Loops.mp4 11.8 MB
- 24. Python - Iterations/4. Lists with the range() Function.mp4 11.4 MB
- 21. Python - Conditional Statements/5. A Note on Boolean Values.mp4 11.3 MB
- 44. Deep Learning - Business Case Example/10. Business Case Testing the Model.mp4 11.2 MB
- 33. Part 5 Mathematics/12. Errors when Adding Matrices.mp4 11.2 MB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.mp4 11.0 MB
- 20. Python - Other Python Operators/1. Comparison Operators.mp4 10.2 MB
- 31. Advanced Statistical Methods - K-Means Clustering/7. Relationship between Clustering and Regression.mp4 9.9 MB
- 24. Python - Iterations/7. Conditional Statements, Functions, and Loops.mp4 9.5 MB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.mp4 9.1 MB
- 25. Python - Advanced Python Tools/3. Modules and Packages.mp4 8.5 MB
- 22. Python - Python Functions/4. How to Use a Function within a Function.mp4 8.1 MB
- 22. Python - Python Functions/1. Defining a Function in Python.mp4 7.7 MB
- 22. Python - Python Functions/6. Functions Containing a Few Arguments.mp4 7.6 MB
- 2. The Field of Data Science - The Various Data Science Disciplines/9.1 365_DataScience.png.png 6.9 MB
- 2. The Field of Data Science - The Various Data Science Disciplines/7.2 365_DataScience.png.png 6.9 MB
- 19. Python - Basic Python Syntax/12. Structuring with Indentation.mp4 6.8 MB
- 19. Python - Basic Python Syntax/3. The Double Equality Sign.mp4 6.0 MB
- 19. Python - Basic Python Syntax/10. Indexing Elements.mp4 5.9 MB
- 27. Advanced Statistical Methods - Linear regression/5. Geometrical Representation of the Linear Regression Model.mp4 5.1 MB
- 19. Python - Basic Python Syntax/7. Add Comments.mp4 5.0 MB
- 19. Python - Basic Python Syntax/5. How to Reassign Values.mp4 4.0 MB
- 19. Python - Basic Python Syntax/9. Understanding Line Continuation.mp4 2.4 MB
- 14. Statistics - Practical Example Inferential Statistics/1.1 3.17. Practical example. Confidence intervals_lesson.xlsx.xlsx 1.7 MB
- 14. Statistics - Practical Example Inferential Statistics/2.2 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx.xlsx 1.7 MB
- 14. Statistics - Practical Example Inferential Statistics/2.1 3.17. Practical example. Confidence intervals_exercise.xlsx.xlsx 1.7 MB
- 15. Statistics - Hypothesis Testing/10.1 Online p-value calculator.pdf.pdf 1.2 MB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1.1 Course Notes - Section 6.pdf.pdf 936.4 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2.1 Course Notes - Section 6.pdf.pdf 936.4 KB
- 35. Deep Learning - Introduction to Neural Networks/1.1 Course Notes - Section 2.pdf.pdf 927.7 KB
- 35. Deep Learning - Introduction to Neural Networks/3.1 Course Notes - Section 2.pdf.pdf 927.7 KB
- 44. Deep Learning - Business Case Example/1.1 Audiobooks_data.csv.csv 710.8 KB
- 15. Statistics - Hypothesis Testing/4.1 Course notes_hypothesis_testing.pdf.pdf 658.6 KB
- 15. Statistics - Hypothesis Testing/1.1 Course notes_hypothesis_testing.pdf.pdf 648.6 KB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.1 Shortcuts-for-Jupyter.pdf.pdf 619.2 KB
- 37. Deep Learning - TensorFlow Introduction/1.1 Shortcuts-for-Jupyter.pdf.pdf 619.2 KB
- 37. Deep Learning - TensorFlow Introduction/4.1 Shortcuts-for-Jupyter.pdf.pdf 619.2 KB
- 10. Statistics - Descriptive Statistics/1.1 Course notes_descriptive_statistics.pdf.pdf 482.3 KB
- 9. Part 2 Statistics/1.2 Course notes_descriptive_statistics.pdf.pdf 482.3 KB
- 12. Statistics - Inferential Statistics Fundamentals/1.1 Course notes_inferential statistics.pdf.pdf 382.3 KB
- 12. Statistics - Inferential Statistics Fundamentals/2.1 Course notes_inferential statistics.pdf.pdf 382.3 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/5.1 365_DataScience_Diagram.pdf.pdf 323.1 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/7.1 365_DataScience_Diagram.pdf.pdf 323.1 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf 182.4 KB
- 11. Statistics - Practical Example Descriptive Statistics/1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx.xlsx 146.5 KB
- 11. Statistics - Practical Example Descriptive Statistics/2.1 2.13. Practical-example.Descriptive-statistics-exercise-solution.xlsx.xlsx 146.2 KB
- 11. Statistics - Practical Example Descriptive Statistics/2.2 2.13.Practical-example.Descriptive-statistics-exercise.xlsx.xlsx 120.2 KB
- 16. Statistics - Practical Example Hypothesis Testing/1.1 4.10.Hypothesis-testing-section-practical-example.xlsx.xlsx 51.7 KB
- 16. Statistics - Practical Example Hypothesis Testing/2.2 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx.xlsx 44.0 KB
- 16. Statistics - Practical Example Hypothesis Testing/2.1 4.10. Hypothesis testing section_practical example_exercise.xlsx.xlsx 43.4 KB
- 35. Deep Learning - Introduction to Neural Networks/21.1 GD-function-example.xlsx.xlsx 42.2 KB
- 10. Statistics - Descriptive Statistics/6.1 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx.xlsx 41.1 KB
- 10. Statistics - Descriptive Statistics/12.1 2.6. Cross table and scatter plot_exercise_solution.xlsx.xlsx 40.4 KB
- 10. Statistics - Descriptive Statistics/15.1 2.8. Skewness_lesson.xlsx.xlsx 34.6 KB
- 10. Statistics - Descriptive Statistics/5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx.xlsx 30.8 KB
- 10. Statistics - Descriptive Statistics/22.2 2.11. Covariance_exercise_solution.xlsx.xlsx 29.5 KB
- 10. Statistics - Descriptive Statistics/24.2 2.12. Correlation_exercise_solution.xlsx.xlsx 29.5 KB
- 10. Statistics - Descriptive Statistics/24.1 2.12. Correlation_exercise.xlsx.xlsx 29.3 KB
- 10. Statistics - Descriptive Statistics/11.1 2.6. Cross table and scatter plot.xlsx.xlsx 26.1 KB
- 10. Statistics - Descriptive Statistics/21.1 2.11. Covariance_lesson.xlsx.xlsx 24.9 KB
- 12. Statistics - Inferential Statistics Fundamentals/7.2 3.4. Standard normal distribution_exercise_solution.xlsx.xlsx 23.7 KB
- 11. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.srt 20.6 KB
- 10. Statistics - Descriptive Statistics/22.1 2.11. Covariance_exercise.xlsx.xlsx 20.2 KB
- 9. Part 2 Statistics/1.1 Glossary.xlsx.xlsx 20.0 KB
- 10. Statistics - Descriptive Statistics/16.2 2.8. Skewness_exercise_solution.xlsx.xlsx 19.8 KB
- 12. Statistics - Inferential Statistics Fundamentals/2.2 3.2. What is a distribution_lesson.xlsx.xlsx 19.5 KB
- 10. Statistics - Descriptive Statistics/9.1 2.5. The Histogram_lesson.xlsx.xlsx 18.6 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/3.2 3.9. The z-table.xlsx.xlsx 18.5 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/4.2 3.9. The z-table.xlsx.xlsx 18.5 KB
- 11. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.vtt 17.9 KB
- 10. Statistics - Descriptive Statistics/10.2 2.5.The-Histogram-exercise-solution.xlsx.xlsx 17.1 KB
- 10. Statistics - Descriptive Statistics/12.2 2.6. Cross table and scatter plot_exercise.xlsx.xlsx 16.3 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/7.2 3.11. The t-table.xlsx.xlsx 15.8 KB
- 10. Statistics - Descriptive Statistics/10.1 2.5.The-Histogram-exercise.xlsx.xlsx 15.5 KB
- 10. Statistics - Descriptive Statistics/6.2 2.3. Categorical variables. Visualization techniques_exercise.xlsx.xlsx 15.2 KB
- 15. Statistics - Hypothesis Testing/12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx.xlsx 14.5 KB
- 15. Statistics - Hypothesis Testing/15.2 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx.xlsx 14.4 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/12.1 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx.xlsx 14.2 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/12.2 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx.xlsx 13.7 KB
- 14. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.srt 13.6 KB
- 44. Deep Learning - Business Case Example/4. Business Case Preprocessing.srt 13.5 KB
- 10. Statistics - Descriptive Statistics/8.1 2.4. Numerical variables. Frequency distribution table_exercise_solution.xlsx.xlsx 13.2 KB
- 15. Statistics - Hypothesis Testing/15.1 4.7. Test for the mean. Dependent samples_exercise.xlsx.xlsx 12.8 KB
- 10. Statistics - Descriptive Statistics/20.1 2.10. Standard deviation and coefficient of variation_exercise_solution.xlsx.xlsx 12.4 KB
- 14. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.vtt 11.9 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.srt 11.9 KB
- 15. Statistics - Hypothesis Testing/13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx.xlsx 11.9 KB
- 12. Statistics - Inferential Statistics Fundamentals/7.1 3.4. Standard normal distribution_exercise.xlsx.xlsx 11.8 KB
- 33. Part 5 Mathematics/16. Why is Linear Algebra Useful.srt 11.8 KB
- 10. Statistics - Descriptive Statistics/8.2 2.4. Numerical variables. Frequency distribution table_exercise.xlsx.xlsx 11.7 KB
- 44. Deep Learning - Business Case Example/4. Business Case Preprocessing.vtt 11.7 KB
- 10. Statistics - Descriptive Statistics/14.1 2.7. Mean, median and mode_exercise_solution.xlsx.xlsx 11.4 KB
- 15. Statistics - Hypothesis Testing/13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx.xlsx 11.3 KB
- 10. Statistics - Descriptive Statistics/7.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx.xlsx 11.3 KB
- 10. Statistics - Descriptive Statistics/20.2 2.10. Standard deviation and coefficient of variation_exercise.xlsx.xlsx 11.3 KB
- 15. Statistics - Hypothesis Testing/9.2 4.4. Test for the mean. Population variance known_exercise_solution.xlsx.xlsx 11.2 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/3.1 3.9. Population variance known, z-score_lesson.xlsx.xlsx 11.2 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/4.3 3.9. Population variance known, z-score_exercise_solution.xlsx.xlsx 11.2 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/8.2 3.11. Population variance unknown, t-score_exercise_solution.xlsx.xlsx 11.1 KB
- 5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.srt 11.1 KB
- 10. Statistics - Descriptive Statistics/18.2 2.9. Variance_exercise_solution.xlsx.xlsx 11.1 KB
- 15. Statistics - Hypothesis Testing/9.1 4.4. Test for the mean. Population variance known_exercise.xlsx.xlsx 11.0 KB
- 10. Statistics - Descriptive Statistics/19.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx.xlsx 11.0 KB
- 15. Statistics - Hypothesis Testing/8.1 4.4. Test for the mean. Population variance known_lesson.xlsx.xlsx 11.0 KB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).srt 10.9 KB
- 10. Statistics - Descriptive Statistics/14.2 2.7. Mean, median and mode_exercise.xlsx.xlsx 10.9 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/4.1 3.9. Population variance known, z-score_exercise.xlsx.xlsx 10.8 KB
- 10. Statistics - Descriptive Statistics/18.1 2.9. Variance_exercise.xlsx.xlsx 10.8 KB
- 44. Deep Learning - Business Case Example/1. Business Case Getting acquainted with the dataset.srt 10.8 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/7.1 3.11. Population variance unknown, t-score_lesson.xlsx.xlsx 10.8 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.srt 10.6 KB
- 5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.srt 10.6 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/8.1 3.11. Population variance unknown, t-score_exercise.xlsx.xlsx 10.6 KB
- 5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.srt 10.5 KB
- 10. Statistics - Descriptive Statistics/13.1 2.7. Mean, median and mode_lesson.xlsx.xlsx 10.5 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/11.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx.xlsx 10.5 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.vtt 10.4 KB
- 12. Statistics - Inferential Statistics Fundamentals/6.1 3.4. Standard normal distribution_lesson.xlsx.xlsx 10.4 KB
- 33. Part 5 Mathematics/16. Why is Linear Algebra Useful.vtt 10.3 KB
- 15. Statistics - Hypothesis Testing/18.2 4.9. Test for the mean. Independent samples (Part 2)_exercise_solution.xlsx.xlsx 10.2 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Learning.srt 10.2 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx.xlsx 10.1 KB
- 10. Statistics - Descriptive Statistics/17.1 2.9. Variance_lesson.xlsx.xlsx 10.1 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/13.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx.xlsx 9.8 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/14.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx.xlsx 9.8 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.srt 9.8 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx.xlsx 9.8 KB
- 15. Statistics - Hypothesis Testing/14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx.xlsx 9.8 KB
- 5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.vtt 9.7 KB
- 15. Statistics - Hypothesis Testing/16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx.xlsx 9.6 KB
- 31. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.srt 9.6 KB
- 33. Part 5 Mathematics/15. Dot Product of Matrices.srt 9.5 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/15.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx.xlsx 9.5 KB
- 10. Statistics - Descriptive Statistics/16.1 2.8. Skewness_exercise.xlsx.xlsx 9.5 KB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).vtt 9.5 KB
- 15. Statistics - Hypothesis Testing/18.1 4.9. Test for the mean. Independent samples (Part 2)_exercise.xlsx.xlsx 9.5 KB
- 44. Deep Learning - Business Case Example/1. Business Case Getting acquainted with the dataset.vtt 9.4 KB
- 15. Statistics - Hypothesis Testing/17.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx.xlsx 9.3 KB
- 5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.vtt 9.3 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.vtt 9.3 KB
- 5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.vtt 9.2 KB
- 31. Advanced Statistical Methods - K-Means Clustering/9. Market Segmentation with Cluster Analysis (Part 2).srt 9.2 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/16.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx.xlsx 9.2 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Model Outline.srt 9.1 KB
- 3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.srt 9.0 KB
- 15. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.srt 9.0 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Learning.vtt 8.9 KB
- 5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.srt 8.7 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.vtt 8.6 KB
- 5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.srt 8.6 KB
- 16. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.srt 8.5 KB
- 35. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.srt 8.5 KB
- 31. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.vtt 8.3 KB
- 33. Part 5 Mathematics/15. Dot Product of Matrices.vtt 8.2 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Results and Testing.srt 8.2 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/17. Dealing with Categorical Data - Dummy Variables.srt 8.2 KB
- 15. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.srt 8.1 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/11. Confidence intervals. Two means. Dependent samples.srt 8.0 KB
- 31. Advanced Statistical Methods - K-Means Clustering/9. Market Segmentation with Cluster Analysis (Part 2).vtt 8.0 KB
- 37. Deep Learning - TensorFlow Introduction/8. Basic NN Example with TF Model Output.srt 7.9 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Model Outline.vtt 7.9 KB
- 27. Advanced Statistical Methods - Linear regression/7. First Regression in Python.srt 7.9 KB
- 3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt 7.9 KB
- 15. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.vtt 7.8 KB
- 17. Part 3 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.srt 7.8 KB
- 44. Deep Learning - Business Case Example/6. Creating a Data Provider.srt 7.8 KB
- 5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.vtt 7.7 KB
- 5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.vtt 7.6 KB
- 10. Statistics - Descriptive Statistics/17. Variance.srt 7.5 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/2. Adjusted R-Squared.srt 7.5 KB
- 31. Advanced Statistical Methods - K-Means Clustering/8. Market Segmentation with Cluster Analysis (Part 1).srt 7.5 KB
- 35. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.srt 7.5 KB
- 18. Python - Variables and Data Types/5. Python Strings.srt 7.5 KB
- 35. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.vtt 7.4 KB
- 16. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.vtt 7.4 KB
- 31. Advanced Statistical Methods - K-Means Clustering/4. How to Choose the Number of Clusters.srt 7.4 KB
- 37. Deep Learning - TensorFlow Introduction/6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.srt 7.4 KB
- 32. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.srt 7.4 KB
- 15. Statistics - Hypothesis Testing/1. The Null vs Alternative Hypothesis.srt 7.4 KB
- 6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.srt 7.3 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Results and Testing.vtt 7.1 KB
- 17. Part 3 Introduction to Python/7. Installing Python and Jupyter.srt 7.1 KB
- 15. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.vtt 7.1 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/17. Dealing with Categorical Data - Dummy Variables.vtt 7.1 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/11. Confidence intervals. Two means. Dependent samples.vtt 7.1 KB
- 27. Advanced Statistical Methods - Linear regression/1. The Linear Regression Model.srt 7.1 KB
- 17. Part 3 Introduction to Python/3. Why Python.srt 7.0 KB
- 44. Deep Learning - Business Case Example/7. Business Case Model Outline.srt 6.9 KB
- 27. Advanced Statistical Methods - Linear regression/7. First Regression in Python.vtt 6.9 KB
- 17. Part 3 Introduction to Python/1. Introduction to Programming.srt 6.9 KB
- 37. Deep Learning - TensorFlow Introduction/8. Basic NN Example with TF Model Output.vtt 6.9 KB
- 39. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.srt 6.9 KB
- 17. Part 3 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.vtt 6.8 KB
- 44. Deep Learning - Business Case Example/6. Creating a Data Provider.vtt 6.8 KB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).srt 6.8 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.srt 6.7 KB
- 15. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.srt 6.7 KB
- 10. Statistics - Descriptive Statistics/11. Cross Table and Scatter Plot.srt 6.7 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/12. A3 Normality and Homoscedasticity.srt 6.7 KB
- 31. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.srt 6.7 KB
- 21. Python - Conditional Statements/4. The ELIF Statement.srt 6.7 KB
- 10. Statistics - Descriptive Statistics/17. Variance.vtt 6.6 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.srt 6.6 KB
- 35. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.vtt 6.6 KB
- 10. Statistics - Descriptive Statistics/19. Standard Deviation and Coefficient of Variation.srt 6.6 KB
- 44. Deep Learning - Business Case Example/8. Business Case Optimization.srt 6.6 KB
- 27. Advanced Statistical Methods - Linear regression/14. R-Squared.srt 6.6 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/2. Adjusted R-Squared.vtt 6.6 KB
- 29. Advanced Statistical Methods - Logistic Regression/11. Testing the Model.srt 6.6 KB
- 31. Advanced Statistical Methods - K-Means Clustering/8. Market Segmentation with Cluster Analysis (Part 1).vtt 6.5 KB
- 4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.srt 6.5 KB
- 37. Deep Learning - TensorFlow Introduction/6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt 6.5 KB
- 18. Python - Variables and Data Types/5. Python Strings.vtt 6.5 KB
- 45. Deep Learning - Conclusion/3. An overview of CNNs.srt 6.4 KB
- 15. Statistics - Hypothesis Testing/1. The Null vs Alternative Hypothesis.vtt 6.4 KB
- 10. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.srt 6.4 KB
- 31. Advanced Statistical Methods - K-Means Clustering/4. How to Choose the Number of Clusters.vtt 6.4 KB
- 6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.vtt 6.4 KB
- 32. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.vtt 6.4 KB
- 31. Advanced Statistical Methods - K-Means Clustering/10. How is Clustering Useful.srt 6.4 KB
- 1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.srt 6.4 KB
- 32. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.srt 6.3 KB
- 27. Advanced Statistical Methods - Linear regression/10. How to Interpret the Regression Table.srt 6.3 KB
- 30. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.srt 6.2 KB
- 17. Part 3 Introduction to Python/7. Installing Python and Jupyter.vtt 6.2 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/9. Margin of Error.srt 6.2 KB
- 18. Python - Variables and Data Types/1. Variables.srt 6.2 KB
- 27. Advanced Statistical Methods - Linear regression/1. The Linear Regression Model.vtt 6.1 KB
- 17. Part 3 Introduction to Python/3. Why Python.vtt 6.1 KB
- 25. Python - Advanced Python Tools/1. Object Oriented Programming.srt 6.1 KB
- 17. Part 3 Introduction to Python/1. Introduction to Programming.vtt 6.1 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/13. Confidence intervals. Two means. Independent samples (Part 1).srt 6.1 KB
- 44. Deep Learning - Business Case Example/7. Business Case Model Outline.vtt 6.1 KB
- 39. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.vtt 6.0 KB
- 42. Deep Learning - Preprocessing/3. Standardization.srt 6.0 KB
- 10. Statistics - Descriptive Statistics/1. Types of Data.srt 6.0 KB
- 33. Part 5 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.srt 5.9 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.srt 5.9 KB
- 15. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.srt 5.9 KB
- 35. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.srt 5.9 KB
- 31. Advanced Statistical Methods - K-Means Clustering/6. To Standardize or to not Standardize.srt 5.9 KB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).vtt 5.9 KB
- 10. Statistics - Descriptive Statistics/11. Cross Table and Scatter Plot.vtt 5.9 KB
- 12. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.srt 5.9 KB
- 15. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.vtt 5.9 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.vtt 5.8 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.vtt 5.8 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/12. A3 Normality and Homoscedasticity.vtt 5.8 KB
- 29. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.srt 5.8 KB
- 27. Advanced Statistical Methods - Linear regression/14. R-Squared.vtt 5.8 KB
- 20. Python - Other Python Operators/3. Logical and Identity Operators.srt 5.8 KB
- 44. Deep Learning - Business Case Example/8. Business Case Optimization.vtt 5.8 KB
- 31. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.vtt 5.8 KB
- 10. Statistics - Descriptive Statistics/19. Standard Deviation and Coefficient of Variation.vtt 5.8 KB
- 21. Python - Conditional Statements/4. The ELIF Statement.vtt 5.8 KB
- 10. Statistics - Descriptive Statistics/13. Mean, median and mode.srt 5.7 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/7. Confidence Intervals; Population Variance Unknown; t-score.srt 5.7 KB
- 29. Advanced Statistical Methods - Logistic Regression/11. Testing the Model.vtt 5.7 KB
- 4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.vtt 5.7 KB
- 5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.srt 5.7 KB
- 15. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.srt 5.7 KB
- 10. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.vtt 5.7 KB
- 45. Deep Learning - Conclusion/3. An overview of CNNs.vtt 5.7 KB
- 31. Advanced Statistical Methods - K-Means Clustering/10. How is Clustering Useful.vtt 5.7 KB
- 12. Statistics - Inferential Statistics Fundamentals/8. Central Limit Theorem.srt 5.6 KB
- 27. Advanced Statistical Methods - Linear regression/6. Python Packages Installation.srt 5.6 KB
- 1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.vtt 5.6 KB
- 39. Deep Learning - Overfitting/1. What is Overfitting.srt 5.6 KB
- 29. Advanced Statistical Methods - Logistic Regression/6. Understanding Logistic Regression Tables.srt 5.6 KB
- 23. Python - Sequences/5. List Slicing.srt 5.6 KB
- 15. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).srt 5.5 KB
- 27. Advanced Statistical Methods - Linear regression/10. How to Interpret the Regression Table.vtt 5.5 KB
- 9. Part 2 Statistics/1. Population and Sample.srt 5.5 KB
- 32. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.vtt 5.5 KB
- 35. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.srt 5.5 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/9. Margin of Error.vtt 5.4 KB
- 15. Statistics - Hypothesis Testing/17. Test for the mean. Independent samples (Part 2).srt 5.4 KB
- 30. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.vtt 5.4 KB
- 29. Advanced Statistical Methods - Logistic Regression/8. Binary Predictors in a Logistic Regression.srt 5.4 KB
- 33. Part 5 Mathematics/13. Transpose of a Matrix.srt 5.4 KB
- 18. Python - Variables and Data Types/1. Variables.vtt 5.4 KB
- 25. Python - Advanced Python Tools/1. Object Oriented Programming.vtt 5.3 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/13. Confidence intervals. Two means. Independent samples (Part 1).vtt 5.3 KB
- 44. Deep Learning - Business Case Example/11. Business Case A Comment on the Homework.srt 5.3 KB
- 8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.srt 5.3 KB
- 42. Deep Learning - Preprocessing/3. Standardization.vtt 5.3 KB
- 35. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.srt 5.3 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.srt 5.3 KB
- 10. Statistics - Descriptive Statistics/1. Types of Data.vtt 5.2 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/10. A2 No Endogeneity.srt 5.2 KB
- 35. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.srt 5.2 KB
- 45. Deep Learning - Conclusion/1. Summary of What You Learned.srt 5.2 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt 5.2 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).srt 5.2 KB
- 37. Deep Learning - TensorFlow Introduction/3. TensorFlow Outline and Logic.srt 5.2 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.srt 5.2 KB
- 15. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.vtt 5.2 KB
- 35. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.vtt 5.2 KB
- 33. Part 5 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.vtt 5.1 KB
- 31. Advanced Statistical Methods - K-Means Clustering/6. To Standardize or to not Standardize.vtt 5.1 KB
- 45. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.srt 5.1 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.srt 5.1 KB
- 1. Part 1 Introduction/2. What Does the Course Cover.srt 5.1 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.srt 5.1 KB
- 12. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.vtt 5.1 KB
- 29. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.vtt 5.0 KB
- 15. Statistics - Hypothesis Testing/10. p-value.srt 5.0 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/7. Confidence Intervals; Population Variance Unknown; t-score.vtt 5.0 KB
- 10. Statistics - Descriptive Statistics/13. Mean, median and mode.vtt 5.0 KB
- 20. Python - Other Python Operators/3. Logical and Identity Operators.vtt 5.0 KB
- 23. Python - Sequences/1. Lists.srt 5.0 KB
- 29. Advanced Statistical Methods - Logistic Regression/10. Underfitting and Overfitting.srt 5.0 KB
- 5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.vtt 5.0 KB
- 12. Statistics - Inferential Statistics Fundamentals/8. Central Limit Theorem.vtt 5.0 KB
- 39. Deep Learning - Overfitting/1. What is Overfitting.vtt 4.9 KB
- 10. Statistics - Descriptive Statistics/21. Covariance.srt 4.9 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/13. A4 No Autocorrelation.srt 4.9 KB
- 12. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.srt 4.9 KB
- 39. Deep Learning - Overfitting/3. What is Validation.srt 4.9 KB
- 15. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.vtt 4.9 KB
- 27. Advanced Statistical Methods - Linear regression/6. Python Packages Installation.vtt 4.9 KB
- 29. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.srt 4.9 KB
- 29. Advanced Statistical Methods - Logistic Regression/6. Understanding Logistic Regression Tables.vtt 4.8 KB
- 37. Deep Learning - TensorFlow Introduction/7. Basic NN Example with TF Loss Function and Gradient Descent.srt 4.8 KB
- 23. Python - Sequences/5. List Slicing.vtt 4.8 KB
- 25. Python - Advanced Python Tools/7. Importing Modules in Python.srt 4.8 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.srt 4.8 KB
- 9. Part 2 Statistics/1. Population and Sample.vtt 4.8 KB
- 42. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.srt 4.8 KB
- 30. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.srt 4.8 KB
- 15. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).vtt 4.8 KB
- 35. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.vtt 4.8 KB
- 29. Advanced Statistical Methods - Logistic Regression/7. What do the Odds Actually Mean.srt 4.8 KB
- 29. Advanced Statistical Methods - Logistic Regression/8. Binary Predictors in a Logistic Regression.vtt 4.7 KB
- 10. Statistics - Descriptive Statistics/23. Correlation Coefficient.srt 4.7 KB
- 15. Statistics - Hypothesis Testing/17. Test for the mean. Independent samples (Part 2).vtt 4.7 KB
- 8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.vtt 4.7 KB
- 33. Part 5 Mathematics/13. Transpose of a Matrix.vtt 4.7 KB
- 32. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.srt 4.7 KB
- 44. Deep Learning - Business Case Example/11. Business Case A Comment on the Homework.vtt 4.7 KB
- 17. Part 3 Introduction to Python/5. Why Jupyter.srt 4.6 KB
- 34. Part 6 Deep Learning/1. What to Expect from this Part.srt 4.6 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/15. A5 No Multicollinearity.srt 4.6 KB
- 31. Advanced Statistical Methods - K-Means Clustering/5. Pros and Cons of K-Means Clustering.srt 4.6 KB
- 35. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.vtt 4.6 KB
- 45. Deep Learning - Conclusion/1. Summary of What You Learned.vtt 4.6 KB
- 37. Deep Learning - TensorFlow Introduction/3. TensorFlow Outline and Logic.vtt 4.6 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/10. A2 No Endogeneity.vtt 4.6 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.vtt 4.6 KB
- 35. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.vtt 4.6 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).vtt 4.6 KB
- 45. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.vtt 4.6 KB
- 10. Statistics - Descriptive Statistics/3. Levels of Measurement.srt 4.5 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/15. Confidence intervals. Two means. Independent samples (Part 2).srt 4.5 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.vtt 4.5 KB
- 7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.srt 4.5 KB
- 1. Part 1 Introduction/2. What Does the Course Cover.vtt 4.5 KB
- 44. Deep Learning - Business Case Example/3. The Importance of Working with a Balanced Dataset.srt 4.5 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.srt 4.5 KB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).srt 4.5 KB
- 15. Statistics - Hypothesis Testing/10. p-value.vtt 4.5 KB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).srt 4.5 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.srt 4.5 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/19. Making Predictions with the Linear Regression.srt 4.4 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.vtt 4.4 KB
- 2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.vtt 4.4 KB
- 29. Advanced Statistical Methods - Logistic Regression/10. Underfitting and Overfitting.vtt 4.4 KB
- 10. Statistics - Descriptive Statistics/7. Numerical Variables - Frequency Distribution Table.srt 4.4 KB
- 22. Python - Python Functions/2. How to Create a Function with a Parameter.srt 4.4 KB
- 33. Part 5 Mathematics/1. What is a matrix.srt 4.3 KB
- 12. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.vtt 4.3 KB
- 10. Statistics - Descriptive Statistics/21. Covariance.vtt 4.3 KB
- 23. Python - Sequences/1. Lists.vtt 4.3 KB
- 35. Deep Learning - Introduction to Neural Networks/3. Training the Model.srt 4.3 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/13. A4 No Autocorrelation.vtt 4.3 KB
- 29. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.vtt 4.3 KB
- 39. Deep Learning - Overfitting/3. What is Validation.vtt 4.3 KB
- 33. Part 5 Mathematics/14. Dot Product.srt 4.3 KB
- 37. Deep Learning - TensorFlow Introduction/7. Basic NN Example with TF Loss Function and Gradient Descent.vtt 4.2 KB
- 22. Python - Python Functions/7. Built-in Functions in Python.srt 4.2 KB
- 30. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.vtt 4.2 KB
- 23. Python - Sequences/7. Dictionaries.srt 4.2 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.vtt 4.2 KB
- 29. Advanced Statistical Methods - Logistic Regression/7. What do the Odds Actually Mean.vtt 4.2 KB
- 39. Deep Learning - Overfitting/5. N-Fold Cross Validation.srt 4.2 KB
- 42. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.vtt 4.2 KB
- 27. Advanced Statistical Methods - Linear regression/11. Decomposition of Variability.srt 4.2 KB
- 25. Python - Advanced Python Tools/7. Importing Modules in Python.vtt 4.2 KB
- 10. Statistics - Descriptive Statistics/23. Correlation Coefficient.vtt 4.1 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/5. Student's T Distribution.srt 4.1 KB
- 29. Advanced Statistical Methods - Logistic Regression/9. Calculating the Accuracy of the Model.srt 4.1 KB
- 19. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.srt 4.1 KB
- 32. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.vtt 4.1 KB
- 33. Part 5 Mathematics/5. Linear Algebra and Geometry.srt 4.1 KB
- 17. Part 3 Introduction to Python/5. Why Jupyter.vtt 4.1 KB
- 30. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.srt 4.1 KB
- 33. Part 5 Mathematics/10. Addition and Subtraction of Matrices.srt 4.0 KB
- 34. Part 6 Deep Learning/1. What to Expect from this Part.vtt 4.0 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/15. A5 No Multicollinearity.vtt 4.0 KB
- 10. Statistics - Descriptive Statistics/3. Levels of Measurement.vtt 4.0 KB
- 31. Advanced Statistical Methods - K-Means Clustering/5. Pros and Cons of K-Means Clustering.vtt 4.0 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/15. Confidence intervals. Two means. Independent samples (Part 2).vtt 4.0 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.srt 4.0 KB
- 23. Python - Sequences/3. Using Methods.srt 4.0 KB
- 12. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.srt 3.9 KB
- 7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.vtt 3.9 KB
- 44. Deep Learning - Business Case Example/3. The Importance of Working with a Balanced Dataset.vtt 3.9 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.vtt 3.9 KB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).vtt 3.9 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.vtt 3.9 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.srt 3.9 KB
- 35. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).srt 3.9 KB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).vtt 3.9 KB
- 24. Python - Iterations/8. How to Iterate over Dictionaries.srt 3.9 KB
- 42. Deep Learning - Preprocessing/1. Preprocessing Introduction.srt 3.9 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/19. Making Predictions with the Linear Regression.vtt 3.9 KB
- 10. Statistics - Descriptive Statistics/7. Numerical Variables - Frequency Distribution Table.vtt 3.8 KB
- 27. Advanced Statistical Methods - Linear regression/13. What is the OLS.srt 3.8 KB
- 33. Part 5 Mathematics/1. What is a matrix.vtt 3.8 KB
- 35. Deep Learning - Introduction to Neural Networks/3. Training the Model.vtt 3.8 KB
- 22. Python - Python Functions/2. How to Create a Function with a Parameter.vtt 3.8 KB
- 33. Part 5 Mathematics/3. Scalars and Vectors.srt 3.8 KB
- 17. Part 3 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.srt 3.7 KB
- 12. Statistics - Inferential Statistics Fundamentals/11. Estimators and Estimates.srt 3.7 KB
- 40. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.srt 3.7 KB
- 45. Deep Learning - Conclusion/5. An Overview of RNNs.srt 3.7 KB
- 18. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.srt 3.7 KB
- 33. Part 5 Mathematics/14. Dot Product.vtt 3.7 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/5. Student's T Distribution.vtt 3.7 KB
- 40. Deep Learning - Initialization/2. Types of Simple Initializations.srt 3.7 KB
- 22. Python - Python Functions/7. Built-in Functions in Python.vtt 3.7 KB
- 39. Deep Learning - Overfitting/5. N-Fold Cross Validation.vtt 3.7 KB
- 27. Advanced Statistical Methods - Linear regression/11. Decomposition of Variability.vtt 3.7 KB
- 10. Statistics - Descriptive Statistics/15. Skewness.srt 3.6 KB
- 23. Python - Sequences/7. Dictionaries.vtt 3.6 KB
- 29. Advanced Statistical Methods - Logistic Regression/9. Calculating the Accuracy of the Model.vtt 3.6 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.srt 3.6 KB
- 33. Part 5 Mathematics/8. What is a Tensor.srt 3.6 KB
- 39. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.srt 3.6 KB
- 21. Python - Conditional Statements/1. The IF Statement.srt 3.6 KB
- 24. Python - Iterations/6. Conditional Statements and Loops.srt 3.6 KB
- 5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.srt 3.6 KB
- 19. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.vtt 3.6 KB
- 25. Python - Advanced Python Tools/5. What is the Standard Library.srt 3.6 KB
- 33. Part 5 Mathematics/5. Linear Algebra and Geometry.vtt 3.5 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.srt 3.5 KB
- 30. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.vtt 3.5 KB
- 22. Python - Python Functions/5. Conditional Statements and Functions.srt 3.5 KB
- 40. Deep Learning - Initialization/1. What is Initialization.srt 3.5 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.srt 3.5 KB
- 33. Part 5 Mathematics/10. Addition and Subtraction of Matrices.vtt 3.5 KB
- 23. Python - Sequences/3. Using Methods.vtt 3.5 KB
- 37. Deep Learning - TensorFlow Introduction/5. Types of File Formats, supporting Tensors.srt 3.5 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.srt 3.5 KB
- 12. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.vtt 3.4 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.vtt 3.4 KB
- 35. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).vtt 3.4 KB
- 23. Python - Sequences/6. Tuples.srt 3.4 KB
- 42. Deep Learning - Preprocessing/1. Preprocessing Introduction.vtt 3.4 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.vtt 3.4 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/1. Multiple Linear Regression.srt 3.4 KB
- 24. Python - Iterations/8. How to Iterate over Dictionaries.vtt 3.3 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).srt 3.3 KB
- 27. Advanced Statistical Methods - Linear regression/13. What is the OLS.vtt 3.3 KB
- 45. Deep Learning - Conclusion/5. An Overview of RNNs.vtt 3.3 KB
- 33. Part 5 Mathematics/3. Scalars and Vectors.vtt 3.3 KB
- 29. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.srt 3.3 KB
- 30. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.srt 3.3 KB
- 12. Statistics - Inferential Statistics Fundamentals/11. Estimators and Estimates.vtt 3.3 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.srt 3.3 KB
- 17. Part 3 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.vtt 3.3 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.srt 3.2 KB
- 31. Advanced Statistical Methods - K-Means Clustering/3. Clustering Categorical Data.srt 3.2 KB
- 40. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt 3.2 KB
- 40. Deep Learning - Initialization/2. Types of Simple Initializations.vtt 3.2 KB
- 37. Deep Learning - TensorFlow Introduction/1. How to Install TensorFlow.srt 3.2 KB
- 29. Advanced Statistical Methods - Logistic Regression/5. An Invaluable Coding Tip.srt 3.2 KB
- 10. Statistics - Descriptive Statistics/15. Skewness.vtt 3.2 KB
- 18. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.vtt 3.2 KB
- 33. Part 5 Mathematics/8. What is a Tensor.vtt 3.2 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.vtt 3.2 KB
- 25. Python - Advanced Python Tools/5. What is the Standard Library.vtt 3.1 KB
- 24. Python - Iterations/6. Conditional Statements and Loops.vtt 3.1 KB
- 5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.vtt 3.1 KB
- 22. Python - Python Functions/3. Defining a Function in Python - Part II.srt 3.1 KB
- 21. Python - Conditional Statements/1. The IF Statement.vtt 3.1 KB
- 39. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.vtt 3.1 KB
- 35. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.srt 3.1 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.vtt 3.1 KB
- 40. Deep Learning - Initialization/1. What is Initialization.vtt 3.1 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.vtt 3.1 KB
- 22. Python - Python Functions/5. Conditional Statements and Functions.vtt 3.0 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.vtt 3.0 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/6. OLS Assumptions.srt 3.0 KB
- 10. Statistics - Descriptive Statistics/9. The Histogram.srt 3.0 KB
- 37. Deep Learning - TensorFlow Introduction/5. Types of File Formats, supporting Tensors.vtt 3.0 KB
- 23. Python - Sequences/6. Tuples.vtt 3.0 KB
- 44. Deep Learning - Business Case Example/9. Business Case Interpretation.srt 2.9 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/1. Multiple Linear Regression.vtt 2.9 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.srt 2.9 KB
- 21. Python - Conditional Statements/5. A Note on Boolean Values.srt 2.9 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).vtt 2.9 KB
- 5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).srt 2.9 KB
- 29. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.vtt 2.9 KB
- 30. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.vtt 2.9 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.vtt 2.9 KB
- 37. Deep Learning - TensorFlow Introduction/1. How to Install TensorFlow.vtt 2.8 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.vtt 2.8 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.srt 2.8 KB
- 31. Advanced Statistical Methods - K-Means Clustering/3. Clustering Categorical Data.vtt 2.8 KB
- 24. Python - Iterations/1. For Loops.srt 2.8 KB
- 24. Python - Iterations/4. Lists with the range() Function.srt 2.8 KB
- 21. Python - Conditional Statements/3. The ELSE Statement.srt 2.8 KB
- 29. Advanced Statistical Methods - Logistic Regression/5. An Invaluable Coding Tip.vtt 2.8 KB
- 24. Python - Iterations/3. While Loops and Incrementing.srt 2.8 KB
- 35. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.srt 2.8 KB
- 42. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.srt 2.8 KB
- 35. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.vtt 2.7 KB
- 44. Deep Learning - Business Case Example/10. Business Case Testing the Model.srt 2.7 KB
- 22. Python - Python Functions/3. Defining a Function in Python - Part II.vtt 2.7 KB
- 35. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.srt 2.7 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/6. OLS Assumptions.vtt 2.7 KB
- 10. Statistics - Descriptive Statistics/9. The Histogram.vtt 2.7 KB
- 39. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.srt 2.6 KB
- 44. Deep Learning - Business Case Example/9. Business Case Interpretation.vtt 2.6 KB
- 33. Part 5 Mathematics/12. Errors when Adding Matrices.srt 2.6 KB
- 5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).vtt 2.6 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.vtt 2.6 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/5. Test for Significance of the Model (F-Test).srt 2.6 KB
- 45. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.srt 2.6 KB
- 21. Python - Conditional Statements/5. A Note on Boolean Values.vtt 2.5 KB
- 22. Python - Python Functions/1. Defining a Function in Python.srt 2.5 KB
- 44. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.srt 2.5 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.vtt 2.5 KB
- 20. Python - Other Python Operators/1. Comparison Operators.srt 2.5 KB
- 21. Python - Conditional Statements/3. The ELSE Statement.vtt 2.5 KB
- 24. Python - Iterations/4. Lists with the range() Function.vtt 2.5 KB
- 24. Python - Iterations/1. For Loops.vtt 2.4 KB
- 35. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.vtt 2.4 KB
- 42. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.vtt 2.4 KB
- 24. Python - Iterations/3. While Loops and Incrementing.vtt 2.4 KB
- 24. Python - Iterations/7. Conditional Statements, Functions, and Loops.srt 2.4 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.srt 2.4 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/8. A1 Linearity.srt 2.4 KB
- 44. Deep Learning - Business Case Example/10. Business Case Testing the Model.vtt 2.4 KB
- 35. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.vtt 2.3 KB
- 39. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.vtt 2.3 KB
- 33. Part 5 Mathematics/12. Errors when Adding Matrices.vtt 2.3 KB
- 45. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.vtt 2.3 KB
- 19. Python - Basic Python Syntax/12. Structuring with Indentation.srt 2.3 KB
- 5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.srt 2.2 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/5. Test for Significance of the Model (F-Test).vtt 2.2 KB
- 26. Part 4 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.srt 2.2 KB
- 22. Python - Python Functions/1. Defining a Function in Python.vtt 2.2 KB
- 44. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.vtt 2.2 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/11. MNIST Solutions.html 2.2 KB
- 31. Advanced Statistical Methods - K-Means Clustering/7. Relationship between Clustering and Regression.srt 2.2 KB
- 15. Statistics - Hypothesis Testing/2. Further Reading on Null and Alternative Hypothesis.html 2.2 KB
- 37. Deep Learning - TensorFlow Introduction/4. Actual Introduction to TensorFlow.srt 2.2 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.srt 2.2 KB
- 20. Python - Other Python Operators/1. Comparison Operators.vtt 2.1 KB
- 5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).srt 2.1 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/10. MNIST Exercises.html 2.1 KB
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.vtt 2.1 KB
- 35. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.srt 2.1 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Relevant Packages.srt 2.1 KB
- 27. Advanced Statistical Methods - Linear regression/3. Correlation vs Regression.srt 2.1 KB
- 24. Python - Iterations/7. Conditional Statements, Functions, and Loops.vtt 2.1 KB
- 28. Advanced Statistical Methods - Multiple Linear Regression/8. A1 Linearity.vtt 2.1 KB
- 22. Python - Python Functions/4. How to Use a Function within a Function.srt 2.0 KB
- 12. Statistics - Inferential Statistics Fundamentals/10. Standard error.srt 2.0 KB
- 5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.vtt 2.0 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/17. Confidence intervals. Two means. Independent samples (Part 3).srt 2.0 KB
- 19. Python - Basic Python Syntax/12. Structuring with Indentation.vtt 2.0 KB
- 26. Part 4 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.vtt 1.9 KB
- 37. Deep Learning - TensorFlow Introduction/4. Actual Introduction to TensorFlow.vtt 1.9 KB
- 31. Advanced Statistical Methods - K-Means Clustering/7. Relationship between Clustering and Regression.vtt 1.9 KB
- 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.vtt 1.9 KB
- 5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).vtt 1.9 KB
- 43. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Relevant Packages.vtt 1.9 KB
- 5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.srt 1.9 KB
- 35. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.vtt 1.9 KB
- 19. Python - Basic Python Syntax/3. The Double Equality Sign.srt 1.8 KB
- 27. Advanced Statistical Methods - Linear regression/3. Correlation vs Regression.vtt 1.8 KB
- 22. Python - Python Functions/4. How to Use a Function within a Function.vtt 1.8 KB
- 12. Statistics - Inferential Statistics Fundamentals/10. Standard error.vtt 1.8 KB
- 13. Statistics - Inferential Statistics Confidence Intervals/17. Confidence intervals. Two means. Independent samples (Part 3).vtt 1.7 KB
- 19. Python - Basic Python Syntax/7. Add Comments.srt 1.7 KB
- 19. Python - Basic Python Syntax/10. Indexing Elements.srt 1.7 KB
- 5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.vtt 1.6 KB
- 27. Advanced Statistical Methods - Linear regression/5. Geometrical Representation of the Linear Regression Model.srt 1.6 KB
- 42. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.srt 1.6 KB
- 12. Statistics - Inferential Statistics Fundamentals/1. Introduction.srt 1.6 KB
- 29. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.srt 1.6 KB
- 19. Python - Basic Python Syntax/3. The Double Equality Sign.vtt 1.6 KB
- 37. Deep Learning - TensorFlow Introduction/9. Basic NN Example with TF Exercises.html 1.6 KB
- 19. Python - Basic Python Syntax/7. Add Comments.vtt 1.5 KB
- 27. Advanced Statistical Methods - Linear regression/9. Using Seaborn for Graphs.srt 1.5 KB
- 19. Python - Basic Python Syntax/10. Indexing Elements.vtt 1.5 KB
- 42. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.vtt 1.5 KB
- 27. Advanced Statistical Methods - Linear regression/5. Geometrical Representation of the Linear Regression Model.vtt 1.5 KB
- 12. Statistics - Inferential Statistics Fundamentals/1. Introduction.vtt 1.4 KB
- 29. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.vtt 1.4 KB
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5. Basic NN Example Exercises.html 1.4 KB
- 22. Python - Python Functions/6. Functions Containing a Few Arguments.srt 1.3 KB
- 27. Advanced Statistical Methods - Linear regression/9. Using Seaborn for Graphs.vtt 1.3 KB
- 19. Python - Basic Python Syntax/5. How to Reassign Values.srt 1.3 KB
- 25. Python - Advanced Python Tools/3. Modules and Packages.srt 1.3 KB
- 19. Python - Basic Python Syntax/9. Understanding Line Continuation.srt 1.1 KB
- 19. Python - Basic Python Syntax/5. How to Reassign Values.vtt 1.1 KB
- 25. Python - Advanced Python Tools/3. Modules and Packages.vtt 1.1 KB
- 22. Python - Python Functions/6. Functions Containing a Few Arguments.vtt 1.1 KB
- 45. Deep Learning - Conclusion/4. DeepMind and Deep Learning.html 1.0 KB
- 19. Python - Basic Python Syntax/9. Understanding Line Continuation.vtt 1.0 KB
- 37. Deep Learning - TensorFlow Introduction/2. A Note on Installation of Packages in Anaconda.html 626 bytes
- 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9. Backpropagation - A Peek into the Mathematics of Optimization.html 539 bytes
- 10. Statistics - Descriptive Statistics/18. Variance Exercise.html 522 bytes
- 44. Deep Learning - Business Case Example/12. Business Case Final Exercise.html 439 bytes
- 44. Deep Learning - Business Case Example/5. Business Case Preprocessing Exercise.html 383 bytes
- 33. Part 5 Mathematics/12.1 Errors when Adding Matrices Python Notebook.html 220 bytes
- 33. Part 5 Mathematics/7.1 Arrays in Python Notebook.html 181 bytes
- 33. Part 5 Mathematics/10.1 Addition and Subtraction of Matrices Python Notebook.html 178 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/11.10 TensorFlow MNIST '5. Activation Functions (Part 2)' Solution.html 172 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/11.8 TensorFlow MNIST '4. Activation Functions (Part 1)' Solution.html 172 bytes
- 33. Part 5 Mathematics/15.1 Dot Product of Matrices Python Notebook.html 171 bytes
- 33. Part 5 Mathematics/13.1 Transpose of a Matrix Python Notebook.html 167 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/11.5 TensorFlow MNIST '8. Learning Rate (Part 1)' Solution.html 165 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/11.6 TensorFlow MNIST '9. Learning Rate (Part 2)' Solution.html 165 bytes
- 37. Deep Learning - TensorFlow Introduction/9.1 Basic NN Example with TensorFlow Exercise 2.4 Solution.html 162 bytes
- 37. Deep Learning - TensorFlow Introduction/9.2 Basic NN Example with TensorFlow Exercise 2.1 Solution.html 162 bytes
- 37. Deep Learning - TensorFlow Introduction/9.5 Basic NN Example with TensorFlow Exercise 2.2 Solution.html 162 bytes
- 37. Deep Learning - TensorFlow Introduction/9.8 Basic NN Example with TensorFlow Exercise 2.3 Solution.html 162 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/11.1 TensorFlow MNIST 'Time' Solution.html 162 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/11.7 TensorFlow MNIST '7. Batch size (Part 2)' Solution.html 162 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/11.9 TensorFlow MNIST '6. Batch size (Part 1)' Solution.html 162 bytes
- 10. Statistics - Descriptive Statistics/2. Types of Data.html 161 bytes
- 10. Statistics - Descriptive Statistics/4. Levels of Measurement.html 161 bytes
- 12. Statistics - Inferential Statistics Fundamentals/12. Estimators and Estimates.html 161 bytes
- 12. Statistics - Inferential Statistics Fundamentals/3. What is a Distribution.html 161 bytes
- 12. Statistics - Inferential Statistics Fundamentals/5. The Normal Distribution.html 161 bytes
- 12. Statistics - Inferential Statistics Fundamentals/9. Central Limit Theorem.html 161 bytes
- 13. Statistics - Inferential Statistics Confidence Intervals/10. Margin of Error.html 161 bytes
- 13. Statistics - Inferential Statistics Confidence Intervals/2. What are Confidence Intervals.html 161 bytes
- 13. Statistics - Inferential Statistics Confidence Intervals/6. Student's T Distribution.html 161 bytes
- 15. Statistics - Hypothesis Testing/11. p-value.html 161 bytes
- 15. Statistics - Hypothesis Testing/3. The Null vs Alternative Hypothesis.html 161 bytes
- 15. Statistics - Hypothesis Testing/5. Rejection Region and Significance Level.html 161 bytes
- 15. Statistics - Hypothesis Testing/7. Type I Error and Type II Error.html 161 bytes
- 17. Part 3 Introduction to Python/10. Jupyter's Interface.html 161 bytes
- 17. Part 3 Introduction to Python/2. Introduction to Programming.html 161 bytes
- 17. Part 3 Introduction to Python/4. Why Python.html 161 bytes
- 17. Part 3 Introduction to Python/6. Why Jupyter.html 161 bytes
- 18. Python - Variables and Data Types/2. Variables.html 161 bytes
- 18. Python - Variables and Data Types/4. Numbers and Boolean Values in Python.html 161 bytes
- 18. Python - Variables and Data Types/6. Python Strings.html 161 bytes
- 19. Python - Basic Python Syntax/11. Indexing Elements.html 161 bytes
- 19. Python - Basic Python Syntax/13. Structuring with Indentation.html 161 bytes
- 19. Python - Basic Python Syntax/2. Using Arithmetic Operators in Python.html 161 bytes
- 19. Python - Basic Python Syntax/4. The Double Equality Sign.html 161 bytes
- 19. Python - Basic Python Syntax/6. How to Reassign Values.html 161 bytes
- 19. Python - Basic Python Syntax/8. Add Comments.html 161 bytes
- 20. Python - Other Python Operators/2. Comparison Operators.html 161 bytes
- 20. Python - Other Python Operators/4. Logical and Identity Operators.html 161 bytes
- 21. Python - Conditional Statements/2. The IF Statement.html 161 bytes
- 21. Python - Conditional Statements/6. A Note on Boolean Values.html 161 bytes
- 22. Python - Python Functions/8. Python Functions.html 161 bytes
- 23. Python - Sequences/2. Lists.html 161 bytes
- 23. Python - Sequences/4. Using Methods.html 161 bytes
- 23. Python - Sequences/8. Dictionaries.html 161 bytes
- 24. Python - Iterations/2. For Loops.html 161 bytes
- 24. Python - Iterations/5. Lists with the range() Function.html 161 bytes
- 25. Python - Advanced Python Tools/2. Object Oriented Programming.html 161 bytes
- 25. Python - Advanced Python Tools/4. Modules and Packages.html 161 bytes
- 25. Python - Advanced Python Tools/6. What is the Standard Library.html 161 bytes
- 25. Python - Advanced Python Tools/8. Importing Modules in Python.html 161 bytes
- 26. Part 4 Advanced Statistical Methods in Python/2. Introduction to Regression Analysis.html 161 bytes
- 27. Advanced Statistical Methods - Linear regression/12. Decomposition of Variability.html 161 bytes
- 27. Advanced Statistical Methods - Linear regression/15. R-Squared.html 161 bytes
- 27. Advanced Statistical Methods - Linear regression/2. The Linear Regression Model.html 161 bytes
- 27. Advanced Statistical Methods - Linear regression/4. Correlation vs Regression.html 161 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/11. A2 No Endogeneity.html 161 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/14. A4 No autocorrelation.html 161 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/16. A5 No Multicollinearity.html 161 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/3. Adjusted R-Squared.html 161 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/7. OLS Assumptions.html 161 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/9. A1 Linearity.html 161 bytes
- 2. The Field of Data Science - The Various Data Science Disciplines/10. A Breakdown of our Data Science Infographic.html 161 bytes
- 2. The Field of Data Science - The Various Data Science Disciplines/2. Data Science and Business Buzzwords Why are there so many.html 161 bytes
- 2. The Field of Data Science - The Various Data Science Disciplines/4. What is the difference between Analysis and Analytics.html 161 bytes
- 2. The Field of Data Science - The Various Data Science Disciplines/6. Business Analytics, Data Analytics, and Data Science An Introduction.html 161 bytes
- 2. The Field of Data Science - The Various Data Science Disciplines/8. Continuing with BI, ML, and AI.html 161 bytes
- 33. Part 5 Mathematics/11. Addition and Subtraction of Matrices.html 161 bytes
- 33. Part 5 Mathematics/2. What is a Matrix.html 161 bytes
- 33. Part 5 Mathematics/4. Scalars and Vectors.html 161 bytes
- 33. Part 5 Mathematics/6. Linear Algebra and Geometry.html 161 bytes
- 33. Part 5 Mathematics/9. What is a Tensor.html 161 bytes
- 34. Part 6 Deep Learning/2. What is Machine Learning.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/10. The Linear Model with Multiple Inputs.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/12. The Linear model with Multiple Inputs and Multiple Outputs.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/14. Graphical Representation of Simple Neural Networks.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/16. What is the Objective Function.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/18. Common Objective Functions L2-norm Loss.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/20. Common Objective Functions Cross-Entropy Loss.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/22. Optimization Algorithm 1-Parameter Gradient Descent.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/24. Optimization Algorithm n-Parameter Gradient Descent.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/2. Introduction to Neural Networks.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/4. Training the Model.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/6. Types of Machine Learning.html 161 bytes
- 35. Deep Learning - Introduction to Neural Networks/8. The Linear Model.html 161 bytes
- 3. The Field of Data Science - Connecting the Data Science Disciplines/2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html 161 bytes
- 4. The Field of Data Science - The Benefits of Each Discipline/2. The Reason behind these Disciplines.html 161 bytes
- 5. The Field of Data Science - Popular Data Science Techniques/11. Techniques for Working with Traditional Methods.html 161 bytes
- 5. The Field of Data Science - Popular Data Science Techniques/14. Machine Learning (ML) Techniques.html 161 bytes
- 5. The Field of Data Science - Popular Data Science Techniques/16. Types of Machine Learning.html 161 bytes
- 5. The Field of Data Science - Popular Data Science Techniques/18. Real Life Examples of Machine Learning (ML).html 161 bytes
- 5. The Field of Data Science - Popular Data Science Techniques/2. Techniques for Working with Traditional Data.html 161 bytes
- 5. The Field of Data Science - Popular Data Science Techniques/5. Techniques for Working with Big Data.html 161 bytes
- 5. The Field of Data Science - Popular Data Science Techniques/8. Business Intelligence (BI) Techniques.html 161 bytes
- 6. The Field of Data Science - Popular Data Science Tools/2. Necessary Programming Languages and Software Used in Data Science.html 161 bytes
- 7. The Field of Data Science - Careers in Data Science/2. Finding the Job - What to Expect and What to Look for.html 161 bytes
- 8. The Field of Data Science - Debunking Common Misconceptions/2. Debunking Common Misconceptions.html 161 bytes
- 9. Part 2 Statistics/2. Population and Sample.html 161 bytes
- 37. Deep Learning - TensorFlow Introduction/9.4 Basic NN Example with TensorFlow Exercise 3 Solution.html 160 bytes
- 37. Deep Learning - TensorFlow Introduction/9.6 Basic NN Example with TensorFlow Exercise 4 Solution.html 160 bytes
- 37. Deep Learning - TensorFlow Introduction/9.7 Basic NN Example with TensorFlow Exercise 1 Solution.html 160 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/11.3 TensorFlow MNIST '3. Width and Depth' Solution.html 160 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/3.1 TensorFlow MNIST Part 1 with Comments.html 159 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/4.1 TensorFlow MNIST Part 2 with Comments.html 159 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/5.1 TensorFlow MNIST Part 3 with Comments.html 159 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/6.1 TensorFlow MNIST Part 4 with Comments.html 159 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/7.1 TensorFlow MNIST Part 5 with Comments.html 159 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/8.1 TensorFlow MNIST Part 6 with Comments.html 159 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/11.11 TensorFlow MNIST 'Around 98% Accuracy' Solution.html 157 bytes
- 37. Deep Learning - TensorFlow Introduction/8.1 Basic NN Example with TensorFlow (Complete).html 156 bytes
- 33. Part 5 Mathematics/14.1 Dot Product Python Notebook.html 154 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.6 Basic NN Example Exercise 3d Solution.html 154 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.7 Basic NN Example Exercise 3b Solution.html 154 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.8 Basic NN Example Exercise 3c Solution.html 154 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.9 Basic NN Example Exercise 3a Solution.html 154 bytes
- 37. Deep Learning - TensorFlow Introduction/5.1 Basic NN Example with TensorFlow (Part 1).html 154 bytes
- 37. Deep Learning - TensorFlow Introduction/6.1 Basic NN Example with TensorFlow (Part 2).html 154 bytes
- 37. Deep Learning - TensorFlow Introduction/7.1 Basic NN Example with TensorFlow (Part 3).html 154 bytes
- 37. Deep Learning - TensorFlow Introduction/9.3 Basic NN Example with TensorFlow (All Exercises).html 154 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/9.1 TensorFlow MNIST Complete Code with Comments.html 152 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/11.2 TensorFlow MNIST '1. Width' Solution.html 150 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/11.4 TensorFlow MNIST '2. Depth' Solution.html 150 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.10 Basic NN Example Exercise 6 Solution.html 149 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.1 Basic NN Example Exercise 5 Solution.html 149 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.3 Basic NN Example Exercise 4 Solution.html 149 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.4 Basic NN Example Exercise 1 Solution.html 149 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.5 Basic NN Example Exercise 2 Solution.html 149 bytes
- 33. Part 5 Mathematics/8.1 Tensors Notebook.html 148 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4.1 Basic NN Example (Part 4).html 145 bytes
- 43. Deep Learning - Classifying on the MNIST Dataset/10.1 TensorFlow MNIST All Exercises.html 144 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.2 Basic NN Example (All Exercises).html 143 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.2 Bais NN Example Part 1.html 136 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2.1 Basic NN Example (Part 2).html 136 bytes
- 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3.1 Basic NN Example (Part 3).html 136 bytes
- 18. Python - Variables and Data Types/1.1 Variables - Resources.html 134 bytes
- 18. Python - Variables and Data Types/3.1 Numbers and Boolean Values - Resources.html 134 bytes
- 18. Python - Variables and Data Types/5.1 Strings - Resources.html 134 bytes
- 19. Python - Basic Python Syntax/10.1 Indexing Elements - Resources.html 134 bytes
- 19. Python - Basic Python Syntax/1.1 Arithmetic Operators - Resources.html 134 bytes
- 19. Python - Basic Python Syntax/12.1 Structure Your Code with Indentation - Resources.html 134 bytes
- 19. Python - Basic Python Syntax/3.1 The Double Equality Sign - Resources.html 134 bytes
- 19. Python - Basic Python Syntax/5.1 Reassign Values - Resources.html 134 bytes
- 19. Python - Basic Python Syntax/7.1 Add Comments - Resources.html 134 bytes
- 19. Python - Basic Python Syntax/9.1 Line Continuation - Resources.html 134 bytes
- 20. Python - Other Python Operators/1.1 Comparison Operators - Resources.html 134 bytes
- 20. Python - Other Python Operators/3.1 Logical and Identity Operators - Resources.html 134 bytes
- 21. Python - Conditional Statements/1.1 Introduction to the If Statement - Resources.html 134 bytes
- 21. Python - Conditional Statements/3.1 Add an Else Statement - Resources.html 134 bytes
- 21. Python - Conditional Statements/4.1 Else if, for Brief - Elif - Resources.html 134 bytes
- 21. Python - Conditional Statements/5.1 A Note on Boolean Values - Resources.html 134 bytes
- 22. Python - Python Functions/1.1 Defining a Function in Python - Resources.html 134 bytes
- 22. Python - Python Functions/2.1 Creating a Function with a Parameter - Resources.html 134 bytes
- 22. Python - Python Functions/3.1 Another Way to Define a Function - Resources.html 134 bytes
- 22. Python - Python Functions/4.1 Using a Function in Another Function - Resources.html 134 bytes
- 22. Python - Python Functions/5.1 Combining Conditional Statements and Functions - Resources.html 134 bytes
- 22. Python - Python Functions/6.1 Creating Functions Containing a Few Arguments - Resources.html 134 bytes
- 22. Python - Python Functions/7.1 Notable Built-In Functions in Python - Resources.html 134 bytes
- 23. Python - Sequences/1.1 Lists - Resources.html 134 bytes
- 23. Python - Sequences/3.1 Help Yourself with Methods - Resources.html 134 bytes
- 23. Python - Sequences/5.1 List Slicing - Resources.html 134 bytes
- 23. Python - Sequences/6.1 Tuples - Resources.html 134 bytes
- 23. Python - Sequences/7.1 Dictionaries - Resources.html 134 bytes
- 24. Python - Iterations/1.1 For Loops - Resources.html 134 bytes
- 24. Python - Iterations/3.1 While Loops and Incrementing - Resources.html 134 bytes
- 24. Python - Iterations/4.1 Create Lists with the range() Function - Resources.html 134 bytes
- 24. Python - Iterations/6.1 Use Conditional Statements and Loops Together - Resources.html 134 bytes
- 24. Python - Iterations/7.1 All In - Conditional Statements, Functions, and Loops - Resources.html 134 bytes
- 24. Python - Iterations/8.1 Iterating over Dictionaries - Resources.html 134 bytes
- 27. Advanced Statistical Methods - Linear regression/7.1 Simple linear regression - Lecture.html 134 bytes
- 27. Advanced Statistical Methods - Linear regression/7.2 Simple linear regression - Exercise.html 134 bytes
- 27. Advanced Statistical Methods - Linear regression/8.1 Simple Linear Regression Exercise.html 134 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/17.1 Dummies - Lecture.html 134 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/18.1 Dummy variables Exercise.html 134 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/19.1 Making predictions - Lecture.html 134 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/2.1 Multiple linear regression - Lecture.html 134 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/4.1 Multiple Linear Regression Exercise.html 134 bytes
- 29. Advanced Statistical Methods - Logistic Regression/11.1 Test dataset.html 134 bytes
- 29. Advanced Statistical Methods - Logistic Regression/2.1 Simple logistic regression example.html 134 bytes
- 29. Advanced Statistical Methods - Logistic Regression/4.1 Building a logistic regression.html 134 bytes
- 29. Advanced Statistical Methods - Logistic Regression/8.1 Binary predictors.html 134 bytes
- 29. Advanced Statistical Methods - Logistic Regression/9.1 Accuracy.html 134 bytes
- 31. Advanced Statistical Methods - K-Means Clustering/2.1 Country clusters.html 134 bytes
- 31. Advanced Statistical Methods - K-Means Clustering/3.1 Clustering categorical data.html 134 bytes
- 31. Advanced Statistical Methods - K-Means Clustering/4.1 Selecting the number of clusters.html 134 bytes
- 31. Advanced Statistical Methods - K-Means Clustering/8.1 Market segmentation example.html 134 bytes
- 31. Advanced Statistical Methods - K-Means Clustering/9.1 Market segmentation example (Part 2).html 134 bytes
- 32. Advanced Statistical Methods - Other Types of Clustering/3.1 Heatmaps.html 134 bytes
- 44. Deep Learning - Business Case Example/11.1 TensorFlow Business Case Homework.html 134 bytes
- 44. Deep Learning - Business Case Example/12.1 TensorFlow Business Case Homework.html 134 bytes
- 44. Deep Learning - Business Case Example/4.1 Audiobooks Preprocessing.html 134 bytes
- 44. Deep Learning - Business Case Example/5.1 Preprocessing Exercise.html 134 bytes
- 44. Deep Learning - Business Case Example/6.1 Creating a Data Provider (Class).html 134 bytes
- 44. Deep Learning - Business Case Example/7.1 TensorFlow Business Case Model Outline.html 134 bytes
- 44. Deep Learning - Business Case Example/8.1 TensorFlow Business Case Optimization.html 134 bytes
- 44. Deep Learning - Business Case Example/9.1 TensorFlow Business Case Interpretation.html 134 bytes
- 10. Statistics - Descriptive Statistics/10. Histogram Exercise.html 81 bytes
- 10. Statistics - Descriptive Statistics/12. Cross Tables and Scatter Plots Exercise.html 81 bytes
- 10. Statistics - Descriptive Statistics/14. Mean, Median and Mode Exercise.html 81 bytes
- 10. Statistics - Descriptive Statistics/16. Skewness Exercise.html 81 bytes
- 10. Statistics - Descriptive Statistics/20. Standard Deviation and Coefficient of Variation Exercise.html 81 bytes
- 10. Statistics - Descriptive Statistics/22. Covariance Exercise.html 81 bytes
- 10. Statistics - Descriptive Statistics/24. Correlation Coefficient Exercise.html 81 bytes
- 10. Statistics - Descriptive Statistics/6. Categorical Variables Exercise.html 81 bytes
- 10. Statistics - Descriptive Statistics/8. Numerical Variables Exercise.html 81 bytes
- 11. Statistics - Practical Example Descriptive Statistics/2. Practical Example Descriptive Statistics Exercise.html 81 bytes
- 12. Statistics - Inferential Statistics Fundamentals/7. The Standard Normal Distribution Exercise.html 81 bytes
- 13. Statistics - Inferential Statistics Confidence Intervals/12. Confidence intervals. Two means. Dependent samples Exercise.html 81 bytes
- 13. Statistics - Inferential Statistics Confidence Intervals/14. Confidence intervals. Two means. Independent samples (Part 1) Exercise.html 81 bytes
- 13. Statistics - Inferential Statistics Confidence Intervals/16. Confidence intervals. Two means. Independent samples (Part 2) Exercise.html 81 bytes
- 13. Statistics - Inferential Statistics Confidence Intervals/4. Confidence Intervals; Population Variance Known; z-score; Exercise.html 81 bytes
- 13. Statistics - Inferential Statistics Confidence Intervals/8. Confidence Intervals; Population Variance Unknown; t-score; Exercise.html 81 bytes
- 14. Statistics - Practical Example Inferential Statistics/2. Practical Example Inferential Statistics Exercise.html 81 bytes
- 15. Statistics - Hypothesis Testing/13. Test for the Mean. Population Variance Unknown Exercise.html 81 bytes
- 15. Statistics - Hypothesis Testing/15. Test for the Mean. Dependent Samples Exercise.html 81 bytes
- 15. Statistics - Hypothesis Testing/18. Test for the mean. Independent samples (Part 2) Exercise.html 81 bytes
- 15. Statistics - Hypothesis Testing/9. Test for the Mean. Population Variance Known Exercise.html 81 bytes
- 16. Statistics - Practical Example Hypothesis Testing/2. Practical Example Hypothesis Testing Exercise.html 81 bytes
- 27. Advanced Statistical Methods - Linear regression/8. First Regression in Python Exercise.html 76 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/18. Dealing with Categorical Data - Dummy Variables.html 76 bytes
- 28. Advanced Statistical Methods - Multiple Linear Regression/4. Multiple Linear Regression Exercise.html 76 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via anywarmservice[AT]gmail.com. Remember to include the full url in your complaint.