[ DevCourseWeb.com ] Python Statistics Essential Training (2023)
File List
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/03 - Cleaning numbers.mp4 41.7 MB
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/02 - Strings and categories.mp4 35.7 MB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/04 - Correlations.mp4 26.0 MB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/06 - Visualizing categorical and numerical values.mp4 25.6 MB
- ~Get Your Files Here !/04 - 3. Linear Regressions/04 - Regression with XGBoost.mp4 19.9 MB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/03 - Outliers and Z-scores.mp4 19.3 MB
- ~Get Your Files Here !/04 - 3. Linear Regressions/03 - Standardizing values.mp4 19.0 MB
- ~Get Your Files Here !/04 - 3. Linear Regressions/01 - Linear regression.mp4 16.7 MB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/05 - Scatter plots.mp4 15.5 MB
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/06 - Solution Clean Ames.mp4 15.0 MB
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/04 - Shrinking numbers.mp4 14.6 MB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/07 - Comparing two categoricals.mp4 13.6 MB
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/01 - Loading data.mp4 13.3 MB
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/03 - Running statistical tests.mp4 12.7 MB
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/02 - Visualizing distributions.mp4 12.6 MB
- ~Get Your Files Here !/04 - 3. Linear Regressions/02 - Interpreting linear regression models.mp4 10.2 MB
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/04 - Testing for normality.mp4 9.7 MB
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/06 - Solution Checking square footage distributions.mp4 9.2 MB
- ~Get Your Files Here !/04 - 3. Linear Regressions/06 - Solution Predict Ames.mp4 8.8 MB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/02 - Histograms and distributions.mp4 8.0 MB
- ~Get Your Files Here !/01 - Introduction/03 - Using GitHub Codespaces with this course.mp4 7.8 MB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/01 - Categorical exploration.mp4 7.7 MB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/09 - Solution Explore Ames.mp4 6.8 MB
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/01 - Exploring data.mp4 6.6 MB
- ~Get Your Files Here !/06 - Conclusion/01 - Next steps.mp4 5.7 MB
- ~Get Your Files Here !/01 - Introduction/01 - Being a Python statistics MVP.mp4 3.4 MB
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/05 - Challenge Clean Ames.mp4 3.2 MB
- ~Get Your Files Here !/04 - 3. Linear Regressions/05 - Challenge Predict Ames.mp4 1.2 MB
- ~Get Your Files Here !/01 - Introduction/02 - What you should know.mp4 998.7 KB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/08 - Challenge Explore Ames.mp4 802.1 KB
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/05 - Challenge Checking square footage distributions.mp4 646.9 KB
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/02 - Strings and categories.srt 27.1 KB
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/03 - Cleaning numbers.srt 26.7 KB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/06 - Visualizing categorical and numerical values.srt 17.1 KB
- ~Get Your Files Here !/04 - 3. Linear Regressions/04 - Regression with XGBoost.srt 14.8 KB
- ~Get Your Files Here !/04 - 3. Linear Regressions/01 - Linear regression.srt 13.6 KB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/05 - Scatter plots.srt 12.6 KB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/04 - Correlations.srt 12.3 KB
- ~Get Your Files Here !/04 - 3. Linear Regressions/03 - Standardizing values.srt 10.7 KB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/03 - Outliers and Z-scores.srt 10.4 KB
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/02 - Visualizing distributions.srt 10.3 KB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/07 - Comparing two categoricals.srt 10.1 KB
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/04 - Shrinking numbers.srt 9.4 KB
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/01 - Loading data.srt 9.2 KB
- ~Get Your Files Here !/04 - 3. Linear Regressions/02 - Interpreting linear regression models.srt 7.4 KB
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/04 - Testing for normality.srt 7.3 KB
- ~Get Your Files Here !/04 - 3. Linear Regressions/06 - Solution Predict Ames.srt 6.7 KB
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/03 - Running statistical tests.srt 6.7 KB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/02 - Histograms and distributions.srt 6.7 KB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/01 - Categorical exploration.srt 6.6 KB
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/06 - Solution Checking square footage distributions.srt 6.3 KB
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/06 - Solution Clean Ames.srt 6.3 KB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/09 - Solution Explore Ames.srt 5.5 KB
- ~Get Your Files Here !/01 - Introduction/03 - Using GitHub Codespaces with this course.srt 5.2 KB
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/01 - Exploring data.srt 4.8 KB
- ~Get Your Files Here !/02 - 1. Loading and Cleaning Data/05 - Challenge Clean Ames.srt 2.8 KB
- ~Get Your Files Here !/06 - Conclusion/01 - Next steps.srt 2.3 KB
- ~Get Your Files Here !/01 - Introduction/01 - Being a Python statistics MVP.srt 1.4 KB
- ~Get Your Files Here !/04 - 3. Linear Regressions/05 - Challenge Predict Ames.srt 1.1 KB
- ~Get Your Files Here !/03 - 2. Exploring and Visualizing/08 - Challenge Explore Ames.srt 763 bytes
- ~Get Your Files Here !/05 - 4. Hypothesis Tests/05 - Challenge Checking square footage distributions.srt 575 bytes
- ~Get Your Files Here !/Bonus Resources.txt 386 bytes
- Get Bonus Downloads Here.url 182 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via anywarmservice[AT]gmail.com. Remember to include the full url in your complaint.