[FreeTutorials.Us] [UDEMY] Cutting-Edge AI Deep Reinforcement Learning in Python [FTU]
File List
- 6. Appendix FAQ/2. Windows-Focused Environment Setup 2018.mp4 194.3 MB
- 4. DDPG (Deep Deterministic Policy Gradient)/5. DDPG Code (part 1).mp4 193.6 MB
- 3. A2C (Advantage Actor-Critic)/10. A2C.mp4 192.3 MB
- 6. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 167.0 MB
- 5. ES (Evolution Strategies)/7. ES for Flappy Bird in Code.mp4 142.2 MB
- 6. Appendix FAQ/11. What order should I take your courses in (part 2).mp4 139.4 MB
- 3. A2C (Advantage Actor-Critic)/8. Environment Wrappers.mp4 128.6 MB
- 6. Appendix FAQ/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 117.5 MB
- 4. DDPG (Deep Deterministic Policy Gradient)/4. MuJoCo.mp4 110.5 MB
- 2. Review of Fundamental Reinforcement Learning Concepts/3. Markov Decision Processes (MDPs).mp4 108.7 MB
- 5. ES (Evolution Strategies)/2. ES Theory.mp4 108.2 MB
- 6. Appendix FAQ/10. What order should I take your courses in (part 1).mp4 99.4 MB
- 3. A2C (Advantage Actor-Critic)/2. A2C Theory (part 1).mp4 96.2 MB
- 6. Appendix FAQ/6. How to Code by Yourself (part 1).mp4 82.6 MB
- 4. DDPG (Deep Deterministic Policy Gradient)/3. DDPG Theory.mp4 80.7 MB
- 2. Review of Fundamental Reinforcement Learning Concepts/5. Temporal Difference Learning (TD).mp4 78.6 MB
- 6. Appendix FAQ/8. Proof that using Jupyter Notebook is the same as not using it.mp4 78.3 MB
- 2. Review of Fundamental Reinforcement Learning Concepts/2. The Explore-Exploit Dilemma.mp4 71.6 MB
- 3. A2C (Advantage Actor-Critic)/7. Multiple Processes.mp4 70.1 MB
- 5. ES (Evolution Strategies)/8. ES for MuJoCo in Code.mp4 68.6 MB
- 4. DDPG (Deep Deterministic Policy Gradient)/6. DDPG Code (part 2).mp4 64.8 MB
- 3. A2C (Advantage Actor-Critic)/1. A2C Section Introduction.mp4 61.3 MB
- 5. ES (Evolution Strategies)/6. Flappy Bird.mp4 60.9 MB
- 6. Appendix FAQ/7. How to Code by Yourself (part 2).mp4 56.7 MB
- 5. ES (Evolution Strategies)/5. ES for Supervised Learning.mp4 55.2 MB
- 1. Welcome/2. Outline.mp4 54.3 MB
- 5. ES (Evolution Strategies)/3. Notes on Evolution Strategies.mp4 53.1 MB
- 2. Review of Fundamental Reinforcement Learning Concepts/6. OpenAI Gym Warmup.mp4 49.7 MB
- 5. ES (Evolution Strategies)/4. ES for Optimizing a Function.mp4 46.5 MB
- 3. A2C (Advantage Actor-Critic)/9. Convolutional Neural Network.mp4 45.7 MB
- 4. DDPG (Deep Deterministic Policy Gradient)/2. Deep Q-Learning (DQN) Review.mp4 45.2 MB
- 5. ES (Evolution Strategies)/1. ES Section Introduction.mp4 44.9 MB
- 6. Appendix FAQ/5. How to Succeed in this Course (Long Version).mp4 39.3 MB
- 3. A2C (Advantage Actor-Critic)/11. A2C Section Summary.mp4 32.7 MB
- 3. A2C (Advantage Actor-Critic)/3. A2C Theory (part 2).mp4 32.6 MB
- 2. Review of Fundamental Reinforcement Learning Concepts/4. Monte Carlo Methods.mp4 32.1 MB
- 2. Review of Fundamental Reinforcement Learning Concepts/7. Review Section Summary.mp4 31.2 MB
- 1. Welcome/1. Introduction.mp4 29.5 MB
- 5. ES (Evolution Strategies)/9. ES Section Summary.mp4 28.6 MB
- 3. A2C (Advantage Actor-Critic)/6. A2C Code - Rough Sketch.mp4 28.5 MB
- 3. A2C (Advantage Actor-Critic)/5. A2C Demo.mp4 27.4 MB
- 1. Welcome/3. Where to get the code.mp4 24.5 MB
- 4. DDPG (Deep Deterministic Policy Gradient)/1. DDPG Section Introduction.mp4 23.9 MB
- 6. Appendix FAQ/9. Python 2 vs Python 3.mp4 19.0 MB
- 2. Review of Fundamental Reinforcement Learning Concepts/1. Review Section Introduction.mp4 18.9 MB
- 6. Appendix FAQ/1. What is the Appendix.mp4 18.1 MB
- 4. DDPG (Deep Deterministic Policy Gradient)/7. DDPG Section Summary.mp4 17.6 MB
- 3. A2C (Advantage Actor-Critic)/4. A2C Theory (part 3).mp4 14.2 MB
- 6. Appendix FAQ/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 27.7 KB
- 3. A2C (Advantage Actor-Critic)/2. A2C Theory (part 1).vtt 22.8 KB
- 5. ES (Evolution Strategies)/2. ES Theory.vtt 22.4 KB
- 2. Review of Fundamental Reinforcement Learning Concepts/3. Markov Decision Processes (MDPs).vtt 22.3 KB
- 4. DDPG (Deep Deterministic Policy Gradient)/4. MuJoCo.vtt 21.1 KB
- 6. Appendix FAQ/11. What order should I take your courses in (part 2).vtt 20.2 KB
- 4. DDPG (Deep Deterministic Policy Gradient)/3. DDPG Theory.vtt 20.0 KB
- 4. DDPG (Deep Deterministic Policy Gradient)/5. DDPG Code (part 1).vtt 20.0 KB
- 3. A2C (Advantage Actor-Critic)/10. A2C.vtt 19.7 KB
- 6. Appendix FAQ/6. How to Code by Yourself (part 1).vtt 19.4 KB
- 2. Review of Fundamental Reinforcement Learning Concepts/5. Temporal Difference Learning (TD).vtt 18.6 KB
- 6. Appendix FAQ/2. Windows-Focused Environment Setup 2018.vtt 17.3 KB
- 2. Review of Fundamental Reinforcement Learning Concepts/2. The Explore-Exploit Dilemma.vtt 15.5 KB
- 5. ES (Evolution Strategies)/7. ES for Flappy Bird in Code.vtt 15.5 KB
- 6. Appendix FAQ/10. What order should I take your courses in (part 1).vtt 14.2 KB
- 5. ES (Evolution Strategies)/6. Flappy Bird.vtt 13.8 KB
- 3. A2C (Advantage Actor-Critic)/8. Environment Wrappers.vtt 13.3 KB
- 6. Appendix FAQ/5. How to Succeed in this Course (Long Version).vtt 12.8 KB
- 6. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt 12.6 KB
- 6. Appendix FAQ/8. Proof that using Jupyter Notebook is the same as not using it.vtt 12.3 KB
- 6. Appendix FAQ/7. How to Code by Yourself (part 2).vtt 11.4 KB
- 4. DDPG (Deep Deterministic Policy Gradient)/2. Deep Q-Learning (DQN) Review.vtt 10.5 KB
- 5. ES (Evolution Strategies)/3. Notes on Evolution Strategies.vtt 10.1 KB
- 3. A2C (Advantage Actor-Critic)/7. Multiple Processes.vtt 9.6 KB
- 1. Welcome/2. Outline.vtt 9.3 KB
- 3. A2C (Advantage Actor-Critic)/1. A2C Section Introduction.vtt 9.2 KB
- 2. Review of Fundamental Reinforcement Learning Concepts/4. Monte Carlo Methods.vtt 8.5 KB
- 2. Review of Fundamental Reinforcement Learning Concepts/7. Review Section Summary.vtt 8.3 KB
- 3. A2C (Advantage Actor-Critic)/6. A2C Code - Rough Sketch.vtt 8.1 KB
- 5. ES (Evolution Strategies)/8. ES for MuJoCo in Code.vtt 8.1 KB
- 3. A2C (Advantage Actor-Critic)/3. A2C Theory (part 2).vtt 7.9 KB
- 3. A2C (Advantage Actor-Critic)/11. A2C Section Summary.vtt 7.8 KB
- 5. ES (Evolution Strategies)/1. ES Section Introduction.vtt 7.5 KB
- 2. Review of Fundamental Reinforcement Learning Concepts/6. OpenAI Gym Warmup.vtt 7.2 KB
- 5. ES (Evolution Strategies)/4. ES for Optimizing a Function.vtt 6.8 KB
- 5. ES (Evolution Strategies)/5. ES for Supervised Learning.vtt 6.7 KB
- 4. DDPG (Deep Deterministic Policy Gradient)/6. DDPG Code (part 2).vtt 6.2 KB
- 3. A2C (Advantage Actor-Critic)/9. Convolutional Neural Network.vtt 6.1 KB
- 5. ES (Evolution Strategies)/9. ES Section Summary.vtt 5.7 KB
- 1. Welcome/3. Where to get the code.vtt 5.6 KB
- 6. Appendix FAQ/9. Python 2 vs Python 3.vtt 5.4 KB
- 4. DDPG (Deep Deterministic Policy Gradient)/7. DDPG Section Summary.vtt 4.6 KB
- 2. Review of Fundamental Reinforcement Learning Concepts/1. Review Section Introduction.vtt 4.6 KB
- 1. Welcome/1. Introduction.vtt 4.4 KB
- 4. DDPG (Deep Deterministic Policy Gradient)/1. DDPG Section Introduction.vtt 3.9 KB
- 3. A2C (Advantage Actor-Critic)/4. A2C Theory (part 3).vtt 3.4 KB
- 6. Appendix FAQ/1. What is the Appendix.vtt 3.3 KB
- 3. A2C (Advantage Actor-Critic)/5. A2C Demo.vtt 2.4 KB
- 0. Websites you may like/0. (1Hack.Us) Premium Tutorials-Guides-Articles & Community based Forum.url 377 bytes
- 0. Websites you may like/1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url 328 bytes
- 0. Websites you may like/2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url 286 bytes
- 0. Websites you may like/4. (FTUApps.com) Download Cracked Developers Applications For Free.url 239 bytes
- 0. Websites you may like/How you can help Team-FTU.txt 229 bytes
- 0. Websites you may like/3. (NulledPremium.com) Download E-Learning, E-Books, Audio-Books, Comics, Articles and more... etc.url 163 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via anywarmservice[AT]gmail.com. Remember to include the full url in your complaint.