Cluster Analysis and Unsupervised Machine Learning in Python
File List
- Chapter 7 Setting Up Your Environment (Appendix)/002. Anaconda Environment Setup.mp4 66.4 MB
- Chapter 6 Gaussian Mixture Models (GMMs)/002. Write a Gaussian Mixture Model in Python Code.mp4 62.7 MB
- Chapter 5 Hierarchical Clustering/005. Application Donald Trump vs. Hillary Clinton Tweets.mp4 50.4 MB
- Chapter 7 Setting Up Your Environment (Appendix)/003. How to install Numpy, Scipy, Matplotlib, Pandas, and Tensorflow.mp4 49.1 MB
- Chapter 4 K-Means Clustering/007. Hard K-Means Exercise 3 Solution.mp4 45.6 MB
- Chapter 9 Effective Learning Strategies for Machine Learning (Appendix)/002. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 41.6 MB
- Chapter 5 Hierarchical Clustering/004. Application Evolution.mp4 37.7 MB
- Chapter 9 Effective Learning Strategies for Machine Learning (Appendix)/004. What order should I take your courses in (part 2).mp4 37.5 MB
- Chapter 4 K-Means Clustering/021. K-Means Application Finding Clusters of Related Words.mp4 35.4 MB
- Chapter 8 Extra Help With Python Coding for Beginners (Appendix)/003. Proof that using Jupyter Notebook is the same as not using it.mp4 34.5 MB
- Chapter 6 Gaussian Mixture Models (GMMs)/001. Gaussian Mixture Model (GMM) Algorithm.mp4 30.4 MB
- Chapter 8 Extra Help With Python Coding for Beginners (Appendix)/001. How to Code Yourself (part 1).mp4 29.6 MB
- Chapter 8 Extra Help With Python Coding for Beginners (Appendix)/004. How to use Github & Extra Coding Tips (Optional).mp4 29.2 MB
- Chapter 4 K-Means Clustering/003. Hard K-Means Exercise 1 Solution.mp4 29.2 MB
- Chapter 4 K-Means Clustering/013. Soft K-Means in Python Code.mp4 29.0 MB
- Chapter 4 K-Means Clustering/008. Hard K-Means Objective Theory.mp4 28.5 MB
- Chapter 9 Effective Learning Strategies for Machine Learning (Appendix)/003. What order should I take your courses in (part 1).mp4 28.1 MB
- Chapter 4 K-Means Clustering/002. Hard K-Means Exercise Prompt 1.mp4 24.7 MB
- Chapter 6 Gaussian Mixture Models (GMMs)/008. Expectation-Maximization (pt 1).mp4 23.4 MB
- Chapter 6 Gaussian Mixture Models (GMMs)/007. GMM vs Bayes Classifier (pt 2).mp4 22.1 MB
- Chapter 3 Unsupervised Learning/002. Why Use Clustering.mp4 21.3 MB
- Chapter 4 K-Means Clustering/016. Examples of where K-Means can fail.mp4 20.1 MB
- Chapter 6 Gaussian Mixture Models (GMMs)/006. GMM vs Bayes Classifier (pt 1).mp4 19.6 MB
- Chapter 4 K-Means Clustering/022. Clustering for NLP and Computer Vision Real-World Applications.mp4 19.5 MB
- Chapter 6 Gaussian Mixture Models (GMMs)/003. Practical Issues with GMM.mp4 19.2 MB
- Chapter 8 Extra Help With Python Coding for Beginners (Appendix)/002. How to Code Yourself (part 2).mp4 19.1 MB
- Chapter 4 K-Means Clustering/006. Hard K-Means Exercise Prompt 3.mp4 19.1 MB
- Chapter 4 K-Means Clustering/001. An Easy Introduction to K-Means Clustering.mp4 17.6 MB
- Chapter 4 K-Means Clustering/019. Using K-Means on Real Data MNIST.mp4 17.4 MB
- Chapter 4 K-Means Clustering/005. Hard K-Means Exercise 2 Solution.mp4 17.3 MB
- Chapter 9 Effective Learning Strategies for Machine Learning (Appendix)/001. How to Succeed in this Course (Long Version).mp4 17.3 MB
- Chapter 6 Gaussian Mixture Models (GMMs)/010. Expectation-Maximization (pt 3).mp4 15.4 MB
- z.9781836649373_Code/nlp_class/electronics/unlabeled.review 13.9 MB
- Chapter 4 K-Means Clustering/009. Hard K-Means Objective Code.mp4 13.8 MB
- Chapter 1 Welcome/001. Introduction.mp4 13.6 MB
- Chapter 6 Gaussian Mixture Models (GMMs)/005. Kernel Density Estimation.mp4 13.6 MB
- Chapter 4 K-Means Clustering/018. How to Evaluate a Clustering (Purity, Davies-Bouldin Index).mp4 12.8 MB
- Chapter 3 Unsupervised Learning/001. What is unsupervised learning used for.mp4 12.5 MB
- Chapter 4 K-Means Clustering/004. Hard K-Means Exercise Prompt 2.mp4 11.6 MB
- Chapter 4 K-Means Clustering/023. Suggestion Box.mp4 11.1 MB
- Chapter 7 Setting Up Your Environment (Appendix)/001. Pre-Installation Check.mp4 11.0 MB
- Chapter 5 Hierarchical Clustering/003. Using Hierarchical Clustering in Python and Interpreting the Dendrogram.mp4 11.0 MB
- Chapter 4 K-Means Clustering/020. One Way to Choose K.mp4 10.4 MB
- Chapter 4 K-Means Clustering/011. Soft K-Means.mp4 10.1 MB
- Chapter 2 Getting Set Up/001. Where to get the code.mp4 9.9 MB
- Chapter 1 Welcome/002. Course Outline.mp4 9.5 MB
- z.9781836649373_Code/tensorflow/MNIST_data/train-images-idx3-ubyte.gz 9.5 MB
- Chapter 6 Gaussian Mixture Models (GMMs)/004. Comparison between GMM and K-Means.mp4 9.0 MB
- Chapter 4 K-Means Clustering/015. Visualizing Each Step of K-Means.mp4 7.8 MB
- Chapter 4 K-Means Clustering/014. How to Pace Yourself.mp4 7.8 MB
- Chapter 5 Hierarchical Clustering/002. Agglomerative Clustering Options.mp4 5.5 MB
- Chapter 6 Gaussian Mixture Models (GMMs)/009. Expectation-Maximization (pt 2).mp4 5.0 MB
- Chapter 4 K-Means Clustering/010. Visual Walkthrough of the K-Means Clustering Algorithm (Legacy).mp4 4.1 MB
- Chapter 5 Hierarchical Clustering/001. Visual Walkthrough of Agglomerative Hierarchical Clustering.mp4 3.8 MB
- Chapter 4 K-Means Clustering/017. Disadvantages of K-Means Clustering.mp4 3.7 MB
- Chapter 1 Welcome/003. Special Offer.mp4 3.2 MB
- Chapter 4 K-Means Clustering/012. The K-Means Objective Function.mp4 3.1 MB
- z.9781836649373_Code/bayesian_ml/3/X_set3.csv 2.3 MB
- z.9781836649373_Code/tensorflow/MNIST_data/t10k-images-idx3-ubyte.gz 1.6 MB
- z.9781836649373_Code/bayesian_ml/1/Xtrain.csv 1.4 MB
- z.9781836649373_Code/bayesian_ml/2/Xtrain.csv 1.4 MB
- z.9781836649373_Code/rnn_class/gru_nonorm_part1_word_embeddings.npy 1.2 MB
- z.9781836649373_Code/nlp_class/electronics/negative.review 1.1 MB
- z.9781836649373_Code/nlp_class/electronics/positive.review 1.1 MB
- z.9781836649373_Code/mnist_csv/Xtrain.txt 806.4 KB
- z.9781836649373_Code/nlp_class/spambase.data 686.5 KB
- z.9781836649373_Code/openai/fight.mp4 602.2 KB
- z.9781836649373_Code/bayesian_ml/3/X_set2.csv 595.8 KB
- z.9781836649373_Code/cnn_class/lena.png 462.7 KB
- z.9781836649373_Code/hmm_class/site_data.csv 410.0 KB
- z.9781836649373_Code/nlp_class2/ner.txt 348.2 KB
- z.9781836649373_Code/bayesian_ml/1/Xtest.csv 235.3 KB
- z.9781836649373_Code/bayesian_ml/2/Xtest.csv 235.3 KB
- z.9781836649373_Code/cnn_class2/styles/monalisa.jpg 226.0 KB
- z.9781836649373_Code/cnn_class2/styles/lesdemoisellesdavignon.jpg 177.0 KB
- z.9781836649373_Code/mnist_csv/Q.txt 157.5 KB
- z.9781836649373_Code/nlp_class2/w2v_model.npz 156.7 KB
- z.9781836649373_Code/openai/robots_playing_soccer.jpeg 137.1 KB
- z.9781836649373_Code/nlp_class/all_book_titles.txt 125.0 KB
- z.9781836649373_Code/bayesian_ml/1/Q.csv 119.1 KB
- z.9781836649373_Code/bayesian_ml/2/Q.csv 119.1 KB
- z.9781836649373_Code/bayesian_ml/3/X_set1.csv 95.0 KB
- z.9781836649373_Code/cnn_class2/styles/flowercarrier.jpg 93.2 KB
- z.9781836649373_Code/mnist_csv/Xtest.txt 80.6 KB
- z.9781836649373_Code/cnn_class2/content/sydney.jpg 79.3 KB
- z.9781836649373_Code/openai/finance.png 73.3 KB
- z.9781836649373_Code/tf2.0/daily-minimum-temperatures-in-me.csv 66.5 KB
- z.9781836649373_Code/tf2.0/sbux.csv 60.4 KB
- z.9781836649373_Code/hmm_class/robert_frost.txt 55.0 KB
- z.9781836649373_Code/openai/handwriting.jpg 52.1 KB
- z.9781836649373_Code/openai/webdesign.jpg 49.3 KB
- z.9781836649373_Code/cnn_class/helloworld.wav 36.1 KB
- z.9781836649373_Code/hmm_class/helloworld.wav 36.1 KB
- Chapter 9 Effective Learning Strategies for Machine Learning (Appendix)/002. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.en.srt 33.8 KB
- z.9781836649373_Code/cnn_class2/styles/starrynight.jpg 33.5 KB
- z.9781836649373_Code/nlp_class2/w2v_word2idx.json 30.8 KB
- z.9781836649373_Code/rnn_class/gru_nonorm_part1_wikipedia_word2idx.json 30.3 KB
- z.9781836649373_Code/tf2.0/auto-mpg.data 29.6 KB
- z.9781836649373_Code/tensorflow/MNIST_data/train-labels-idx1-ubyte.gz 28.2 KB
- Chapter 6 Gaussian Mixture Models (GMMs)/002. Write a Gaussian Mixture Model in Python Code.en.srt 26.4 KB
- z.9781836649373_Code/openai/replies.json 26.1 KB
- z.9781836649373_Code/hmm_class/edgar_allan_poe.txt 26.0 KB
- Chapter 9 Effective Learning Strategies for Machine Learning (Appendix)/004. What order should I take your courses in (part 2).en.srt 25.4 KB
- z.9781836649373_Code/openai/physics_problem.jpeg 24.8 KB
- z.9781836649373_Code/pytorch/aapl_msi_sbux.csv 23.5 KB
- z.9781836649373_Code/tf2.0/aapl_msi_sbux.csv 23.5 KB
- z.9781836649373_Code/bayesian_ml/1/ytrain.csv 23.0 KB
- z.9781836649373_Code/bayesian_ml/2/ytrain.csv 23.0 KB
- Chapter 8 Extra Help With Python Coding for Beginners (Appendix)/001. How to Code Yourself (part 1).en.srt 22.9 KB
- Chapter 4 K-Means Clustering/007. Hard K-Means Exercise 3 Solution.en.srt 22.1 KB
- Chapter 7 Setting Up Your Environment (Appendix)/002. Anaconda Environment Setup.en.srt 21.8 KB
- Chapter 6 Gaussian Mixture Models (GMMs)/001. Gaussian Mixture Model (GMM) Algorithm.en.srt 21.7 KB
- z.9781836649373_Code/cnn_class2/content/elephant.jpg 21.6 KB
- Chapter 5 Hierarchical Clustering/005. Application Donald Trump vs. Hillary Clinton Tweets.en.srt 20.5 KB
- z.9781836649373_Code/data_csv/X.txt 19.6 KB
- z.9781836649373_Code/unsupervised_class3/dcgan_theano.py 18.1 KB
- Chapter 5 Hierarchical Clustering/004. Application Evolution.en.srt 18.0 KB
- Chapter 4 K-Means Clustering/008. Hard K-Means Objective Theory.en.srt 18.0 KB
- Chapter 9 Effective Learning Strategies for Machine Learning (Appendix)/003. What order should I take your courses in (part 1).en.srt 18.0 KB
- Chapter 8 Extra Help With Python Coding for Beginners (Appendix)/004. How to use Github & Extra Coding Tips (Optional).en.srt 16.6 KB
- z.9781836649373_Code/unsupervised_class3/dcgan_tf.py 16.0 KB
- Chapter 9 Effective Learning Strategies for Machine Learning (Appendix)/001. How to Succeed in this Course (Long Version).en.srt 16.0 KB
- Chapter 6 Gaussian Mixture Models (GMMs)/007. GMM vs Bayes Classifier (pt 2).en.srt 15.9 KB
- Chapter 8 Extra Help With Python Coding for Beginners (Appendix)/003. Proof that using Jupyter Notebook is the same as not using it.en.srt 15.9 KB
- Chapter 7 Setting Up Your Environment (Appendix)/003. How to install Numpy, Scipy, Matplotlib, Pandas, and Tensorflow.en.srt 15.9 KB
- Chapter 6 Gaussian Mixture Models (GMMs)/008. Expectation-Maximization (pt 1).en.srt 15.9 KB
- Chapter 4 K-Means Clustering/003. Hard K-Means Exercise 1 Solution.en.srt 14.8 KB
- z.9781836649373_Code/rl2/atari/dqn_theano.py 14.1 KB
- Chapter 8 Extra Help With Python Coding for Beginners (Appendix)/002. How to Code Yourself (part 2).en.srt 13.9 KB
- z.9781836649373_Code/kerascv/imagenet_label_names.json 13.9 KB
- Chapter 6 Gaussian Mixture Models (GMMs)/003. Practical Issues with GMM.en.srt 13.6 KB
- Chapter 6 Gaussian Mixture Models (GMMs)/006. GMM vs Bayes Classifier (pt 1).en.srt 13.3 KB
- z.9781836649373_Code/rl2/atari/dqn_tf.py 13.3 KB
- z.9781836649373_Code/nlp_class3/attention.py 13.1 KB
- z.9781836649373_Code/nlp_class2/word2vec_tf.py 13.0 KB
- Chapter 3 Unsupervised Learning/002. Why Use Clustering.en.srt 12.9 KB
- z.9781836649373_Code/rl/tic_tac_toe.py 12.6 KB
- Chapter 4 K-Means Clustering/002. Hard K-Means Exercise Prompt 1.en.srt 12.4 KB
- z.9781836649373_Code/nlp_class3/memory_network.py 12.2 KB
- z.9781836649373_Code/ann_logistic_extra/ecommerce_data.csv 12.1 KB
- z.9781836649373_Code/nlp_class2/glove.py 11.7 KB
- z.9781836649373_Code/nlp_class2/word2vec_theano.py 11.6 KB
- z.9781836649373_Code/pytorch/rl_trader.py 11.6 KB
- z.9781836649373_Code/cnn_class2/siamese.py 11.6 KB
- z.9781836649373_Code/nlp_class2/rntn_theano.py 11.4 KB
- Chapter 6 Gaussian Mixture Models (GMMs)/010. Expectation-Maximization (pt 3).en.srt 10.8 KB
- z.9781836649373_Code/nlp_class2/rntn_tensorflow_rnn.py 10.7 KB
- z.9781836649373_Code/rl3/ddpg.py 10.7 KB
- z.9781836649373_Code/tf2.0/rl_trader.py 10.7 KB
- z.9781836649373_Code/nlp_class3/wseq2seq.py 10.5 KB
- z.9781836649373_Code/supervised_class/dt_without_recursion.py 10.4 KB
- z.9781836649373_Code/nlp_class2/word2vec.py 10.3 KB
- Chapter 4 K-Means Clustering/001. An Easy Introduction to K-Means Clustering.en.srt 10.0 KB
- z.9781836649373_Code/hmm_class/hmmc_scaled_concat_diag.py 10.0 KB
- z.9781836649373_Code/rl3/a2c/atari_wrappers.py 9.9 KB
- z.9781836649373_Code/mnist_csv/label_train.txt 9.8 KB
- z.9781836649373_Code/hmm_class/hmmc.py 9.7 KB
- z.9781836649373_Code/nlp_class2/recursive_theano.py 9.7 KB
- z.9781836649373_Code/rl/linear_rl_trader.py 9.6 KB
- z.9781836649373_Code/rl/grid_world.py 9.5 KB
- Chapter 4 K-Means Clustering/006. Hard K-Means Exercise Prompt 3.en.srt 9.5 KB
- Chapter 4 K-Means Clustering/013. Soft K-Means in Python Code.en.srt 9.5 KB
- Chapter 4 K-Means Clustering/022. Clustering for NLP and Computer Vision Real-World Applications.en.srt 9.4 KB
- Chapter 4 K-Means Clustering/018. How to Evaluate a Clustering (Purity, Davies-Bouldin Index).en.srt 9.4 KB
- z.9781836649373_Code/svm_class/svm_smo.py 9.3 KB
- Chapter 4 K-Means Clustering/021. K-Means Application Finding Clusters of Related Words.en.srt 9.1 KB
- Chapter 6 Gaussian Mixture Models (GMMs)/005. Kernel Density Estimation.en.srt 9.1 KB
- z.9781836649373_Code/data_csv/X_orig.txt 9.0 KB
- z.9781836649373_Code/nlp_class2/pmi.py 9.0 KB
- Chapter 4 K-Means Clustering/005. Hard K-Means Exercise 2 Solution.en.srt 9.0 KB
- z.9781836649373_Code/rnn_class/util.py 8.8 KB
- z.9781836649373_Code/hmm_class/hmmc_scaled_concat.py 8.8 KB
- z.9781836649373_Code/rl2/a3c/worker.py 8.8 KB
- z.9781836649373_Code/unsupervised_class3/vae_tf.py 8.7 KB
- z.9781836649373_Code/hmm_class/hmmc_concat.py 8.6 KB
- z.9781836649373_Code/rl3/a2c/a2c.py 8.5 KB
- z.9781836649373_Code/nlp_class2/glove_theano.py 8.4 KB
- z.9781836649373_Code/unsupervised_class2/autoencoder.py 8.4 KB
- z.9781836649373_Code/recommenders/rbm_tf_k.py 8.3 KB
- z.9781836649373_Code/nlp_class2/glove_tf.py 8.0 KB
- z.9781836649373_Code/ann_class2/util.py 7.9 KB
- z.9781836649373_Code/ab_testing/advertisement_clicks.csv 7.8 KB
- z.9781836649373_Code/unsupervised_class/books.py 7.8 KB
- z.9781836649373_Code/nlp_class2/rntn_tensorflow.py 7.8 KB
- Chapter 3 Unsupervised Learning/001. What is unsupervised learning used for.en.srt 7.7 KB
- z.9781836649373_Code/unsupervised_class2/autoencoder_tf.py 7.7 KB
- z.9781836649373_Code/rl2/cartpole/pg_tf.py 7.7 KB
- z.9781836649373_Code/hmm_class/hmmc_tf.py 7.7 KB
- z.9781836649373_Code/rnn_class/srn_language_tf.py 7.6 KB
- Chapter 4 K-Means Clustering/011. Soft K-Means.en.srt 7.6 KB
- z.9781836649373_Code/unsupervised_class3/vae_theano.py 7.6 KB
- z.9781836649373_Code/rnn_class/srn_language.py 7.5 KB
- z.9781836649373_Code/cnn_class2/tf_resnet.py 7.5 KB
- Chapter 1 Welcome/001. Introduction.en.srt 7.5 KB
- Chapter 4 K-Means Clustering/019. Using K-Means on Real Data MNIST.en.srt 7.2 KB
- z.9781836649373_Code/recommenders/rbm_tf_k_faster.py 7.2 KB
- z.9781836649373_Code/rl2/mountaincar/pg_tf_random.py 7.2 KB
- z.9781836649373_Code/rl2/cartpole/pg_theano.py 7.1 KB
- z.9781836649373_Code/hmm_class/hmmd.py 7.1 KB
- z.9781836649373_Code/cnn_class/cnn_tf.py 7.1 KB
- z.9781836649373_Code/nlp_class2/recursive_tensorflow.py 7.0 KB
- z.9781836649373_Code/rl2/mountaincar/pg_theano.py 7.0 KB
- z.9781836649373_Code/cnn_class/cifar.py 7.0 KB
- Chapter 7 Setting Up Your Environment (Appendix)/001. Pre-Installation Check.en.srt 6.9 KB
- z.9781836649373_Code/nlp_class2/pos_baseline.py 6.9 KB
- z.9781836649373_Code/hmm_class/hmmc_theano2.py 6.9 KB
- z.9781836649373_Code/rl2/cartpole/dqn_tf.py 6.8 KB
- z.9781836649373_Code/rnn_class/batch_wiki.py 6.8 KB
- z.9781836649373_Code/rl2/cartpole/dqn_theano.py 6.8 KB
- z.9781836649373_Code/README.md 6.8 KB
- z.9781836649373_Code/cnn_class/cnn_theano_plot_filters.py 6.8 KB
- z.9781836649373_Code/supervised_class/dt.py 6.7 KB
- z.9781836649373_Code/rnn_class/rrnn_language.py 6.7 KB
- Chapter 4 K-Means Clustering/016. Examples of where K-Means can fail.en.srt 6.7 KB
- z.9781836649373_Code/rnn_class/batch_units.py 6.7 KB
- z.9781836649373_Code/cnn_class/cnn_tf_plot_filters.py 6.7 KB
- z.9781836649373_Code/nlp_class2/glove_svd.py 6.6 KB
- z.9781836649373_Code/nlp_class2/pos_tf.py 6.6 KB
- z.9781836649373_Code/data_csv/legend.txt 6.6 KB
- Chapter 1 Welcome/002. Course Outline.en.srt 6.5 KB
- z.9781836649373_Code/rl2/mountaincar/pg_tf.py 6.5 KB
- z.9781836649373_Code/rnn_class/wiki.py 6.5 KB
- Chapter 4 K-Means Clustering/004. Hard K-Means Exercise Prompt 2.en.srt 6.5 KB
- Chapter 4 K-Means Clustering/009. Hard K-Means Objective Code.en.srt 6.5 KB
- z.9781836649373_Code/rl2/mountaincar/q_learning.py 6.4 KB
- z.9781836649373_Code/nlp_class2/util.py 6.4 KB
- z.9781836649373_Code/bayesian_ml/4/npbgmm.py 6.4 KB
- Chapter 2 Getting Set Up/001. Where to get the code.en.srt 6.3 KB
- z.9781836649373_Code/hmm_class/hmmc_theano.py 6.3 KB
- z.9781836649373_Code/bayesian_ml/4/vigmm.py 6.2 KB
- z.9781836649373_Code/ann_class2/momentum.py 6.2 KB
- z.9781836649373_Code/hmm_class/hmmd_scaled.py 6.1 KB
- z.9781836649373_Code/cnn_class2/tf_resnet_convblock.py 6.1 KB
- z.9781836649373_Code/rl2/mountaincar/pg_theano_random.py 6.0 KB
- z.9781836649373_Code/nlp_class3/poetry.py 6.0 KB
- z.9781836649373_Code/rl3/es_flappy.py 6.0 KB
- z.9781836649373_Code/ann_class2/adam.py 5.9 KB
- z.9781836649373_Code/svm_class/kernel_svm_gradient_primal.py 5.8 KB
- z.9781836649373_Code/nlp_class2/ner_tf.py 5.8 KB
- z.9781836649373_Code/ann_class2/batch_norm_theano.py 5.8 KB
- z.9781836649373_Code/tensorflow/input_data.py 5.7 KB
- z.9781836649373_Code/rnn_class/batch_parity.py 5.7 KB
- z.9781836649373_Code/linear_regression_class/moore.csv 5.7 KB
- Chapter 4 K-Means Clustering/020. One Way to Choose K.en.srt 5.7 KB
- z.9781836649373_Code/nlp_class/sentiment.py 5.6 KB
- Chapter 5 Hierarchical Clustering/002. Agglomerative Clustering Options.en.srt 5.6 KB
- z.9781836649373_Code/ann_class2/batch_norm_tf.py 5.6 KB
- z.9781836649373_Code/nlp_class2/pos_ner_keras.py 5.6 KB
- z.9781836649373_Code/cnn_class/cnn_theano.py 5.6 KB
- z.9781836649373_Code/airline/ann.py 5.4 KB
- Chapter 6 Gaussian Mixture Models (GMMs)/004. Comparison between GMM and K-Means.en.srt 5.4 KB
- z.9781836649373_Code/kerascv/pascal2coco.py 5.4 KB
- z.9781836649373_Code/ann_class2/sgd.py 5.3 KB
- z.9781836649373_Code/unsupervised_class/tweets.py 5.1 KB
- z.9781836649373_Code/nlp_class2/pos_rnn.py 5.0 KB
- Chapter 5 Hierarchical Clustering/003. Using Hierarchical Clustering in Python and Interpreting the Dendrogram.en.srt 5.0 KB
- z.9781836649373_Code/ann_class2/dropout_theano.py 5.0 KB
- z.9781836649373_Code/recommenders/userbased.py 5.0 KB
- z.9781836649373_Code/recommenders/itembased.py 5.0 KB
- z.9781836649373_Code/ann_class2/pytorch_dropout.py 5.0 KB
- z.9781836649373_Code/airline/rnn.py 5.0 KB
- Chapter 4 K-Means Clustering/014. How to Pace Yourself.en.srt 4.9 KB
- z.9781836649373_Code/ann_class2/dropout_tensorflow.py 4.9 KB
- z.9781836649373_Code/unsupervised_class3/util.py 4.9 KB
- z.9781836649373_Code/ann_class2/pytorch_batchnorm.py 4.9 KB
- z.9781836649373_Code/unsupervised_class2/unsupervised.py 4.8 KB
- z.9781836649373_Code/unsupervised_class2/rbm_tf.py 4.8 KB
- z.9781836649373_Code/rnn_class/poetry_classifier.py 4.8 KB
- z.9781836649373_Code/nlp_class2/neural_network2.py 4.7 KB
- z.9781836649373_Code/hmm_class/hmmd_theano2.py 4.7 KB
- z.9781836649373_Code/cnn_class2/use_pretrained_weights_resnet.py 4.7 KB
- z.9781836649373_Code/rl3/es_mujoco.py 4.7 KB
- z.9781836649373_Code/cnn_class2/use_pretrained_weights_vgg.py 4.7 KB
- z.9781836649373_Code/hmm_class/hmmd_tf.py 4.7 KB
- z.9781836649373_Code/cnn_class2/style_transfer1.py 4.7 KB
- z.9781836649373_Code/svm_class/svm_gradient.py 4.7 KB
- z.9781836649373_Code/rl2/mountaincar/n_step.py 4.7 KB
- Chapter 4 K-Means Clustering/023. Suggestion Box.en.srt 4.6 KB
- z.9781836649373_Code/rl2/cartpole/q_learning.py 4.6 KB
- z.9781836649373_Code/ann_class2/rmsprop.py 4.6 KB
- z.9781836649373_Code/cnn_class2/ssd.py 4.5 KB
- z.9781836649373_Code/hmm_class/hmmd_theano.py 4.5 KB
- z.9781836649373_Code/cnn_class2/tf_resnet_first_layers.py 4.5 KB
- z.9781836649373_Code/cnn_class/benchmark.py 4.5 KB
- z.9781836649373_Code/ann_class2/pytorch_example2.py 4.5 KB
- z.9781836649373_Code/tensorflow/MNIST_data/t10k-labels-idx1-ubyte.gz 4.4 KB
- z.9781836649373_Code/unsupervised_class2/rbm.py 4.4 KB
- z.9781836649373_Code/ann_class/xor_donut.py 4.4 KB
- z.9781836649373_Code/unsupervised_class/kmeans_mnist.py 4.4 KB
- z.9781836649373_Code/svm_class/linear_svm_gradient.py 4.4 KB
- z.9781836649373_Code/rnn_class/tf_parity.py 4.4 KB
- z.9781836649373_Code/svm_class/util.py 4.3 KB
- z.9781836649373_Code/bayesian_ml/1/nb.py 4.3 KB
- z.9781836649373_Code/nlp_class3/cnn_toxic.py 4.3 KB
- z.9781836649373_Code/rl2/cartpole/td_lambda.py 4.3 KB
- z.9781836649373_Code/rl/monte_carlo_no_es.py 4.3 KB
- z.9781836649373_Code/rl2/a3c/nets.py 4.3 KB
- z.9781836649373_Code/recommenders/mf2.py 4.2 KB
- z.9781836649373_Code/rl3/flappy2envs.py 4.2 KB
- z.9781836649373_Code/rl/approx_control.py 4.2 KB
- z.9781836649373_Code/supervised_class2/rf_regression.py 4.2 KB
- z.9781836649373_Code/ann_class2/tf_with_save.py 4.2 KB
- z.9781836649373_Code/supervised_class2/knn_dt_demo.py 4.2 KB
- z.9781836649373_Code/rl/monte_carlo_es.py 4.1 KB
- z.9781836649373_Code/ann_class/backprop.py 4.1 KB
- z.9781836649373_Code/rl/policy_iteration_deterministic.py 4.1 KB
- z.9781836649373_Code/linear_regression_class/data_2d.csv 4.1 KB
- z.9781836649373_Code/nlp_class2/markov.py 4.1 KB
- z.9781836649373_Code/nlp_class3/lstm_toxic.py 4.1 KB
- z.9781836649373_Code/svm_class/fake_neural_net.py 4.1 KB
- z.9781836649373_Code/nlp_class2/pretrained_glove.py 4.0 KB
- z.9781836649373_Code/cnn_class2/style_transfer2.py 4.0 KB
- z.9781836649373_Code/keras_examples/translation.py 4.0 KB
- z.9781836649373_Code/cnn_class/edge_benchmark.py 4.0 KB
- z.9781836649373_Code/rnn_class/mlp_parity.py 4.0 KB
- z.9781836649373_Code/nlp_class2/neural_network.py 4.0 KB
- z.9781836649373_Code/rl2/cartpole/q_learning_bins.py 4.0 KB
- Chapter 4 K-Means Clustering/010. Visual Walkthrough of the K-Means Clustering Algorithm (Legacy).en.srt 4.0 KB
- z.9781836649373_Code/rl/policy_iteration_probabilistic.py 4.0 KB
- z.9781836649373_Code/supervised_class2/bias_variance_demo.py 4.0 KB
- z.9781836649373_Code/bayesian_ml/3/run.py 3.9 KB
- z.9781836649373_Code/rl/cartpole.py 3.9 KB
- z.9781836649373_Code/bayesian_ml/1/ytest.csv 3.9 KB
- z.9781836649373_Code/bayesian_ml/2/ytest.csv 3.9 KB
- z.9781836649373_Code/nlp_class2/bow_classifier.py 3.9 KB
- Chapter 5 Hierarchical Clustering/001. Visual Walkthrough of Agglomerative Hierarchical Clustering.en.srt 3.9 KB
- z.9781836649373_Code/unsupervised_class2/vanishing.py 3.8 KB
- z.9781836649373_Code/cnn_class2/style_transfer3.py 3.8 KB
- z.9781836649373_Code/bayesian_ml/3/y_set3.csv 3.8 KB
- z.9781836649373_Code/rl2/mountaincar/td_lambda.py 3.8 KB
- z.9781836649373_Code/unsupervised_class2/xwing.py 3.8 KB
- z.9781836649373_Code/ann_class2/theano_ann.py 3.8 KB
- z.9781836649373_Code/nlp_class2/logistic.py 3.8 KB
- z.9781836649373_Code/bayesian_ml/3/z_set3.csv 3.7 KB
- z.9781836649373_Code/ann_class2/tensorflow2.py 3.7 KB
- z.9781836649373_Code/bayesian_ml/4/data.txt 3.7 KB
- z.9781836649373_Code/nlp_class2/ner_baseline.py 3.7 KB
- z.9781836649373_Code/ann_class2/pytorch_example.py 3.7 KB
- z.9781836649373_Code/cnn_class2/tf_resnet_identity_block.py 3.6 KB
- z.9781836649373_Code/rl/cartpole_gym0.19.py 3.6 KB
- z.9781836649373_Code/bayesian_ml/2/probit.py 3.6 KB
- z.9781836649373_Code/rl3/es_mnist.py 3.6 KB
- z.9781836649373_Code/recommenders/mf.py 3.6 KB
- z.9781836649373_Code/supervised_class2/rf_classification.py 3.6 KB
- z.9781836649373_Code/unsupervised_class/kmeans.py 3.5 KB
- z.9781836649373_Code/ann_class2/theano2.py 3.5 KB
- Chapter 4 K-Means Clustering/017. Disadvantages of K-Means Clustering.en.srt 3.4 KB
- z.9781836649373_Code/rnn_class/srn_parity.py 3.4 KB
- z.9781836649373_Code/nlp_class/lsa.py 3.4 KB
- z.9781836649373_Code/rl3/a2c/subproc_vec_env.py 3.4 KB
- z.9781836649373_Code/rnn_class/srn_parity_tf.py 3.3 KB
- z.9781836649373_Code/rl/approx_prediction.py 3.3 KB
- z.9781836649373_Code/ann_class2/cntk_example.py 3.2 KB
- z.9781836649373_Code/supervised_class/knn.py 3.1 KB
- z.9781836649373_Code/rl/iterative_policy_evaluation_probabilistic.py 3.1 KB
- z.9781836649373_Code/unsupervised_class/gmm.py 3.1 KB
- z.9781836649373_Code/hmm_class/frost.py 3.1 KB
- z.9781836649373_Code/ann_class2/tensorflow1.py 3.1 KB
- z.9781836649373_Code/nlp_class2/tfidf_tsne.py 3.1 KB
- z.9781836649373_Code/hmm_class/hmm_classifier.py 3.0 KB
- z.9781836649373_Code/rl/value_iteration.py 3.0 KB
- z.9781836649373_Code/recommenders/autorec.py 3.0 KB
- z.9781836649373_Code/supervised_class/perceptron.py 3.0 KB
- z.9781836649373_Code/rl/iterative_policy_evaluation_deterministic.py 3.0 KB
- z.9781836649373_Code/supervised_class/knn_vectorized.py 3.0 KB
- z.9781836649373_Code/ann_class/regression.py 3.0 KB
- z.9781836649373_Code/rl/comparing_explore_exploit_methods.py 3.0 KB
- Chapter 6 Gaussian Mixture Models (GMMs)/009. Expectation-Maximization (pt 2).en.srt 2.9 KB
- z.9781836649373_Code/unsupervised_class2/tsne_books.py 2.9 KB
- Chapter 4 K-Means Clustering/015. Visualizing Each Step of K-Means.en.srt 2.9 KB
- z.9781836649373_Code/ann_class2/rmsprop_test.py 2.9 KB
- z.9781836649373_Code/rnn_class/brown.py 2.9 KB
- z.9781836649373_Code/unsupervised_class3/autoencoder_theano.py 2.9 KB
- z.9781836649373_Code/rnn_class/lstm.py 2.9 KB
- z.9781836649373_Code/cnn_class/keras_example.py 2.8 KB
- z.9781836649373_Code/supervised_class2/rf_vs_bag2.py 2.8 KB
- z.9781836649373_Code/svm_class/extra_reading.txt 2.7 KB
- z.9781836649373_Code/rl/monte_carlo.py 2.7 KB
- z.9781836649373_Code/linear_regression_class/data_poly.csv 2.7 KB
- z.9781836649373_Code/linear_regression_class/data_1d.csv 2.7 KB
- z.9781836649373_Code/nlp_class2/pretrained_w2v.py 2.7 KB
- z.9781836649373_Code/cnn_class/custom_blur.py 2.7 KB
- z.9781836649373_Code/cnn_class2/fashion.py 2.7 KB
- z.9781836649373_Code/nlp_class3/bilstm_mnist.py 2.6 KB
- z.9781836649373_Code/recommenders/mf_keras.py 2.6 KB
- z.9781836649373_Code/unsupervised_class3/autoencoder_tf.py 2.6 KB
- z.9781836649373_Code/unsupervised_class/evolution.py 2.6 KB
- z.9781836649373_Code/keras_examples/sentiment_analysis.py 2.6 KB
- z.9781836649373_Code/supervised_class2/adaboost.py 2.6 KB
- z.9781836649373_Code/numpy_class/regression_example.py 2.6 KB
- z.9781836649373_Code/rl/sarsa.py 2.6 KB
- z.9781836649373_Code/ann_class2/mxnet_example.py 2.6 KB
- z.9781836649373_Code/nlp_class/article_spinner.py 2.5 KB
- z.9781836649373_Code/ann_class2/grid_search.py 2.5 KB
- z.9781836649373_Code/rl/q_learning.py 2.5 KB
- z.9781836649373_Code/pytorch/ann_regression.py 2.5 KB
- z.9781836649373_Code/nlp_class/spam2.py 2.5 KB
- z.9781836649373_Code/unsupervised_class/kmeans_visualize.py 2.5 KB
- z.9781836649373_Code/svm_class/svm_spam.py 2.5 KB
- z.9781836649373_Code/numpy_class/classification_example.py 2.5 KB
- z.9781836649373_Code/supervised_class2/util.py 2.5 KB
- z.9781836649373_Code/rl2/a3c/main.py 2.4 KB
- z.9781836649373_Code/nlp_class/stopwords.txt 2.4 KB
- z.9781836649373_Code/cnn_class2/fashion2.py 2.4 KB
- z.9781836649373_Code/ann_class/tf_example.py 2.4 KB
- z.9781836649373_Code/ab_testing/epsilon_greedy.py 2.4 KB
- z.9781836649373_Code/recommenders/mf_keras_res.py 2.4 KB
- z.9781836649373_Code/svm_class/rbfnetwork.py 2.4 KB
- z.9781836649373_Code/linear_regression_class/overfitting.py 2.4 KB
- z.9781836649373_Code/rnn_class/batch_gru.py 2.4 KB
- z.9781836649373_Code/nlp_class2/pos_hmm.py 2.4 KB
- z.9781836649373_Code/cnn_class2/class_activation_maps.py 2.3 KB
- z.9781836649373_Code/cnn_class2/tf_resnet_first_layers_starter.py 2.3 KB
- Chapter 4 K-Means Clustering/012. The K-Means Objective Function.en.srt 2.3 KB
- z.9781836649373_Code/airline/international-airline-passengers.csv 2.3 KB
- z.9781836649373_Code/ann_class2/keras_example.py 2.3 KB
- z.9781836649373_Code/rl/epsilon_greedy.py 2.3 KB
- z.9781836649373_Code/recommenders/mf_keras_deep.py 2.3 KB
- z.9781836649373_Code/ann_class2/random_search.py 2.3 KB
- z.9781836649373_Code/tf2.0/moore.csv 2.2 KB
- z.9781836649373_Code/supervised_class/bayes.py 2.2 KB
- z.9781836649373_Code/recommenders/preprocess2dict.py 2.2 KB
- z.9781836649373_Code/keras_examples/cnn_cifar.py 2.2 KB
- z.9781836649373_Code/hmm_class/generate_c.py 2.2 KB
- z.9781836649373_Code/unsupervised_class3/bayes_classifier_gmm.py 2.2 KB
- z.9781836649373_Code/ab_testing/epsilon_greedy_starter.py 2.2 KB
- z.9781836649373_Code/ann_logistic_extra/ann_train.py 2.2 KB
- z.9781836649373_Code/rl/epsilon_greedy_starter.py 2.2 KB
- z.9781836649373_Code/ann_class2/keras_functional.py 2.2 KB
- z.9781836649373_Code/ab_testing/ucb1.py 2.1 KB
- z.9781836649373_Code/rl/ucb1.py 2.1 KB
- z.9781836649373_Code/keras_examples/util.py 2.1 KB
- z.9781836649373_Code/supervised_class2/bagging_classification.py 2.1 KB
- z.9781836649373_Code/ab_testing/comparing_epsilons.py 2.1 KB
- z.9781836649373_Code/ab_testing/bayesian_normal.py 2.1 KB
- z.9781836649373_Code/rl/bayesian_normal.py 2.1 KB
- z.9781836649373_Code/keras_examples/cnn_dropout_batchnorm.py 2.1 KB
- z.9781836649373_Code/recommenders/extra_reading.txt 2.1 KB
- z.9781836649373_Code/ab_testing/ucb1_starter.py 2.1 KB
- z.9781836649373_Code/rl/ucb1_starter.py 2.1 KB
- z.9781836649373_Code/rl/td0_prediction.py 2.1 KB
- z.9781836649373_Code/recommenders/tfidf.py 2.0 KB
- z.9781836649373_Code/logistic_regression_class/logistic_donut.py 2.0 KB
- z.9781836649373_Code/supervised_class/nb.py 2.0 KB
- z.9781836649373_Code/keras_examples/cnn.py 2.0 KB
- z.9781836649373_Code/rnn_class/gru.py 1.9 KB
- z.9781836649373_Code/ab_testing/chisquare.py 1.9 KB
- z.9781836649373_Code/bayesian_ml/3/y_set2.csv 1.9 KB
- z.9781836649373_Code/supervised_class/multinomialnb.py 1.9 KB
- z.9781836649373_Code/ab_testing/bayesian_bandit.py 1.9 KB
- z.9781836649373_Code/rl/bayesian_bandit.py 1.9 KB
- z.9781836649373_Code/unsupervised_class3/visualize_latent_space.py 1.9 KB
- z.9781836649373_Code/supervised_class2/bagging_regression.py 1.9 KB
- z.9781836649373_Code/ab_testing/bayesian_starter.py 1.9 KB
- z.9781836649373_Code/rl/bayesian_starter.py 1.9 KB
- z.9781836649373_Code/unsupervised_class2/visualize_features.py 1.9 KB
- z.9781836649373_Code/bayesian_ml/4/emgmm.py 1.9 KB
- z.9781836649373_Code/ab_testing/optimistic.py 1.9 KB
- z.9781836649373_Code/rl/optimistic.py 1.9 KB
- z.9781836649373_Code/bayesian_ml/3/z_set2.csv 1.9 KB
- z.9781836649373_Code/recommenders/preprocess_shrink.py 1.8 KB
- z.9781836649373_Code/keras_examples/batchnorm.py 1.8 KB
- z.9781836649373_Code/keras_examples/dropout.py 1.8 KB
- z.9781836649373_Code/ann_logistic_extra/logistic_softmax_train.py 1.8 KB
- z.9781836649373_Code/unsupervised_class2/gaussian_nb.py 1.8 KB
- z.9781836649373_Code/ann_class2/theano1.py 1.8 KB
- z.9781836649373_Code/recommenders/spark2.py 1.8 KB
- z.9781836649373_Code/logistic_regression_class/logistic3.py 1.8 KB
- z.9781836649373_Code/ann_logistic_extra/process.py 1.8 KB
- z.9781836649373_Code/rl/extra_reading.txt 1.8 KB
- z.9781836649373_Code/ann_class/forwardprop.py 1.8 KB
- z.9781836649373_Code/rl3/a2c/neural_network.py 1.8 KB
- z.9781836649373_Code/rl/comparing_epsilons.py 1.8 KB
- z.9781836649373_Code/ab_testing/optimistic_starter.py 1.8 KB
- z.9781836649373_Code/rl/optimistic_starter.py 1.8 KB
- z.9781836649373_Code/unsupervised_class3/bayes_classifier_gaussian.py 1.8 KB
- z.9781836649373_Code/linear_regression_class/moore.py 1.8 KB
- z.9781836649373_Code/linear_regression_class/lr_poly.py 1.8 KB
- z.9781836649373_Code/airline/lr.py 1.8 KB
- z.9781836649373_Code/rl3/a2c/play.py 1.8 KB
- z.9781836649373_Code/supervised_class2/rf_vs_bag.py 1.7 KB
- z.9781836649373_Code/unsupervised_class/hcluster.py 1.7 KB
- z.9781836649373_Code/keras_examples/ann.py 1.7 KB
- z.9781836649373_Code/rl2/cartpole/save_a_video.py 1.7 KB
- z.9781836649373_Code/rl/optimistic_initial_values.py 1.7 KB
- z.9781836649373_Code/ab_testing/server_solution.py 1.7 KB
- z.9781836649373_Code/rl2/cartpole/random_search.py 1.7 KB
- Chapter 1 Welcome/003. Special Offer.en.srt 1.7 KB
- z.9781836649373_Code/cnn_class/echo.py 1.6 KB
- z.9781836649373_Code/supervised_class/util.py 1.6 KB
- z.9781836649373_Code/logistic_regression_class/l1_regularization.py 1.6 KB
- z.9781836649373_Code/rl3/a2c/main.py 1.6 KB
- z.9781836649373_Code/recommenders/preprocess2sparse.py 1.6 KB
- z.9781836649373_Code/logistic_regression_class/logistic_xor.py 1.6 KB
- z.9781836649373_Code/nlp_class3/simple_rnn_test.py 1.6 KB
- z.9781836649373_Code/bayesian_ml/2/em.py 1.6 KB
- z.9781836649373_Code/cnn_class/blur.py 1.6 KB
- z.9781836649373_Code/unsupervised_class/kmeans_fail.py 1.6 KB
- z.9781836649373_Code/nlp_v2/extra_reading.txt 1.5 KB
- z.9781836649373_Code/logistic_regression_class/bad_xor.py 1.5 KB
- z.9781836649373_Code/recommenders/spark.py 1.5 KB
- z.9781836649373_Code/cnn_class2/util.py 1.5 KB
- z.9781836649373_Code/logistic_regression_class/logistic4.py 1.5 KB
- z.9781836649373_Code/hmm_class/coin_data.txt 1.5 KB
- z.9781836649373_Code/ann_logistic_extra/logistic_train.py 1.5 KB
- z.9781836649373_Code/rl2/cartpole/tf_warmup.py 1.5 KB
- z.9781836649373_Code/rl2/gym_tutorial.py 1.5 KB
- z.9781836649373_Code/rl3/gym_review.py 1.4 KB
- z.9781836649373_Code/numpy_class/exercises/ex8.py 1.4 KB
- z.9781836649373_Code/nlp_class3/extra_reading.txt 1.4 KB
- z.9781836649373_Code/keras_examples/sine2.py 1.4 KB
- z.9781836649373_Code/linear_regression_class/lr_2d.py 1.4 KB
- z.9781836649373_Code/data_csv/y.txt 1.4 KB
- z.9781836649373_Code/logistic_regression_class/logistic2.py 1.4 KB
- z.9781836649373_Code/supervised_class/app.py 1.4 KB
- z.9781836649373_Code/unsupervised_class2/tsne_visualization.py 1.4 KB
- z.9781836649373_Code/linear_regression_class/lr_1d.py 1.4 KB
- z.9781836649373_Code/supervised_class2/bootstrap.py 1.4 KB
- z.9781836649373_Code/keras_examples/sine.py 1.4 KB
- z.9781836649373_Code/linear_regression_class/systolic.py 1.4 KB
- z.9781836649373_Code/tf2.0/extra_reading.txt 1.4 KB
- z.9781836649373_Code/nlp_class/nb.py 1.3 KB
- z.9781836649373_Code/svm_class/regression.py 1.3 KB
- z.9781836649373_Code/rl3/es_simple.py 1.3 KB
- z.9781836649373_Code/ab_testing/server_starter.py 1.3 KB
- z.9781836649373_Code/ab_testing/client.py 1.3 KB
- z.9781836649373_Code/unsupervised_class2/tsne_mnist.py 1.3 KB
- z.9781836649373_Code/linear_regression_class/l1_regularization.py 1.3 KB
- z.9781836649373_Code/unsupervised_class3/parameterize_guassian.py 1.3 KB
- z.9781836649373_Code/unsupervised_class2/tsne_donut.py 1.2 KB
- z.9781836649373_Code/hmm_class/generate_ht.py 1.2 KB
- z.9781836649373_Code/rnn_class/visualize_embeddings.py 1.2 KB
- z.9781836649373_Code/unsupervised_class2/extra_reading.txt 1.2 KB
- z.9781836649373_Code/ann_class2/extra_reading.txt 1.2 KB
- z.9781836649373_Code/linear_regression_class/l2_regularization.py 1.2 KB
- z.9781836649373_Code/ab_testing/ex_ttest.py 1.2 KB
- z.9781836649373_Code/unsupervised_class2/umap_transformer.py 1.2 KB
- z.9781836649373_Code/ann_class2/mlp.py 1.2 KB
- z.9781836649373_Code/hmm_class/tf_scan3.py 1.2 KB
- z.9781836649373_Code/unsupervised_class/gmm_mnist.py 1.2 KB
- z.9781836649373_Code/ab_testing/ci_comparison.py 1.2 KB
- z.9781836649373_Code/ab_testing/ex_chisq.py 1.2 KB
- z.9781836649373_Code/rl2/extra_reading.txt 1.1 KB
- z.9781836649373_Code/transformers/extra_reading.txt 1.1 KB
- z.9781836649373_Code/numpy_class/exercises/ex4.py 1.1 KB
- z.9781836649373_Code/svm_class/real_neural_net.py 1.1 KB
- z.9781836649373_Code/linear_regression_class/gradient_descent.py 1.1 KB
- z.9781836649373_Code/pytorch/extra_reading.txt 1.1 KB
- z.9781836649373_Code/cnn_class/edge.py 1.1 KB
- z.9781836649373_Code/nlp_class2/visualize_countries.py 1.1 KB
- z.9781836649373_Code/timeseries/extra_reading.txt 1.1 KB
- z.9781836649373_Code/logistic_regression_class/logistic_visualize.py 1.1 KB
- z.9781836649373_Code/numpy_class/exercises/ex5.py 1.1 KB
- z.9781836649373_Code/recommenders/preprocess.py 1.1 KB
- z.9781836649373_Code/best_fit_line.py 1.1 KB
- z.9781836649373_Code/supervised_class/knn_fail.py 1.1 KB
- z.9781836649373_Code/pytorch/exercises.txt 1.1 KB
- z.9781836649373_Code/tf2.0/exercises.txt 1.1 KB
- z.9781836649373_Code/unsupervised_class3/test_stochastic_tensor.py 1.0 KB
- z.9781836649373_Code/keras_examples/basic_mlp.py 1.0 KB
- z.9781836649373_Code/unsupervised_class2/pca_impl.py 1.0 KB
- z.9781836649373_Code/numpy_class/exercises/ex7.py 1.0 KB
- z.9781836649373_Code/ab_testing/convergence.py 1.0 KB
- z.9781836649373_Code/unsupervised_class2/util.py 1.0 KB
- z.9781836649373_Code/svm_class/svm_medical.py 1.0 KB
- z.9781836649373_Code/rl2/cartpole/theano_warmup.py 1.0 KB
- z.9781836649373_Code/hmm_class/scan3.py 1023 bytes
- z.9781836649373_Code/ab_testing/ttest.py 1020 bytes
- z.9781836649373_Code/openai/extra_reading.txt 1020 bytes
- z.9781836649373_Code/unsupervised_class2/pca.py 1007 bytes
- z.9781836649373_Code/mnist_csv/label_test.txt 1000 bytes
- z.9781836649373_Code/nlp_class3/bilstm_test.py 997 bytes
- z.9781836649373_Code/supervised_class/app_caller.py 985 bytes
- z.9781836649373_Code/ab_testing/demo.py 982 bytes
- z.9781836649373_Code/rl2/a3c/thread_example.py 982 bytes
- z.9781836649373_Code/nlp_class/cipher_placeholder.py 976 bytes
- z.9781836649373_Code/hmm_class/sites.py 973 bytes
- z.9781836649373_Code/unsupervised_class2/tsne_xor.py 971 bytes
- z.9781836649373_Code/ann_class/sklearn_ann.py 961 bytes
- z.9781836649373_Code/hmm_class/tf_scan2.py 949 bytes
- z.9781836649373_Code/hmm_class/tf_scan1.py 948 bytes
- z.9781836649373_Code/cnn_class2/make_limited_datasets.py 928 bytes
- z.9781836649373_Code/svm_class/crossval.py 885 bytes
- z.9781836649373_Code/unsupervised_class/neural_kmeans.py 877 bytes
- z.9781836649373_Code/nlp_class2/ner_rnn.py 874 bytes
- z.9781836649373_Code/cnn_class2/tf_resnet_identity_block_starter.py 872 bytes
- z.9781836649373_Code/ann_logistic_extra/ann_predict.py 867 bytes
- z.9781836649373_Code/supervised_class/regression.py 856 bytes
- z.9781836649373_Code/rl3/extra_reading.txt 851 bytes
- z.9781836649373_Code/cnn_class2/test_softmax.py 832 bytes
- z.9781836649373_Code/supervised_class/app_trainer.py 830 bytes
- z.9781836649373_Code/svm_class/svm_mnist.py 830 bytes
- z.9781836649373_Code/unsupervised_class2/sk_mlp.py 829 bytes
- z.9781836649373_Code/numpy_class/exercises/ex3.py 824 bytes
- z.9781836649373_Code/bayesian_ml/1/README 822 bytes
- z.9781836649373_Code/bayesian_ml/2/README 822 bytes
- z.9781836649373_Code/unsupervised_class/choose_k.py 807 bytes
- z.9781836649373_Code/ab_testing/extra_reading.txt 792 bytes
- z.9781836649373_Code/logistic_regression_class/logistic1.py 791 bytes
- z.9781836649373_Code/numpy_class/exercises/ex9.py 789 bytes
- z.9781836649373_Code/bayesian_ml/3/y_set1.csv 784 bytes
- z.9781836649373_Code/hmm_class/scan2.py 773 bytes
- z.9781836649373_Code/bayesian_ml/3/z_set1.csv 772 bytes
- z.9781836649373_Code/numpy_class/python3/dot_for.py 772 bytes
- z.9781836649373_Code/cnn_class2/tf_resnet_convblock_starter.py 765 bytes
- z.9781836649373_Code/cnn_class/exercises.txt 760 bytes
- z.9781836649373_Code/linear_regression_class/mlr02.xls 751 bytes
- z.9781836649373_Code/unsupervised_class2/compare_pca_svd.py 751 bytes
- z.9781836649373_Code/rl3/plot_ddpg_result.py 746 bytes
- z.9781836649373_Code/nlp_class/extra_reading.txt 745 bytes
- z.9781836649373_Code/hmm_class/scan1.py 732 bytes
- z.9781836649373_Code/nlp_class2/extra_reading.txt 713 bytes
- z.9781836649373_Code/nlp_class3/convert_twitter.py 706 bytes
- z.9781836649373_Code/numpy_class/exercises/ex2.py 696 bytes
- z.9781836649373_Code/cnn_class/extra_reading.txt 695 bytes
- z.9781836649373_Code/numpy_class/exercises/ex1.py 694 bytes
- z.9781836649373_Code/linear_regression_class/generate_2d.py 688 bytes
- z.9781836649373_Code/linear_regression_class/generate_poly.py 675 bytes
- z.9781836649373_Code/ann_logistic_extra/logistic_predict.py 663 bytes
- z.9781836649373_Code/supervised_class/knn_donut.py 657 bytes
- z.9781836649373_Code/supervised_class/knn_xor.py 653 bytes
- z.9781836649373_Code/numpy_class/exercises/ex6.py 652 bytes
- z.9781836649373_Code/linear_regression_class/generate_1d.py 642 bytes
- z.9781836649373_Code/ab_testing/cdfs_and_percentiles.py 639 bytes
- z.9781836649373_Code/rnn_class/exercises.txt 636 bytes
- z.9781836649373_Code/tf2.0/xor3d.py 626 bytes
- z.9781836649373_Code/numpy_class/dot_for.py 605 bytes
- z.9781836649373_Code/data_csv/readme.txt 590 bytes
- z.9781836649373_Code/numpy_class/python3/manual_data_loading.py 559 bytes
- z.9781836649373_Code/rl/plot_rl_rewards.py 555 bytes
- z.9781836649373_Code/numpy_class/manual_data_loading.py 549 bytes
- z.9781836649373_Code/pytorch/plot_rl_rewards.py 548 bytes
- z.9781836649373_Code/tf2.0/plot_rl_rewards.py 548 bytes
- z.9781836649373_Code/supervised_class2/extra_reading.txt 545 bytes
- z.9781836649373_Code/cnn_class2/extra_reading.txt 526 bytes
- z.9781836649373_Code/unsupervised_class3/extra_reading.txt 508 bytes
- z.9781836649373_Code/ann_class/extra_reading.txt 485 bytes
- z.9781836649373_Code/rl3/plot_es_flappy_results.py 452 bytes
- z.9781836649373_Code/rl3/plot_es_mujoco_results.py 452 bytes
- z.9781836649373_Code/hmm_class/extra_reading.txt 396 bytes
- z.9781836649373_Code/rl3/sample_test.py 350 bytes
- z.9781836649373_Code/linear_regression_class/gd.py 323 bytes
- z.9781836649373_Code/calculus/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/chatgpt_trading/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/cnn_class/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/cnn_class2/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/linear_algebra/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/naive_bayes/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/nlp_v2/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/pytorch/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/rnn_class/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/tf2.0/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/timeseries/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/transformers/WHERE ARE THE NOTEBOOKS.txt 299 bytes
- z.9781836649373_Code/linear_algebra/extra_reading.txt 291 bytes
- z.9781836649373_Code/naive_bayes/extra_reading.txt 285 bytes
- z.9781836649373_Code/kerascv/extra_reading.txt 210 bytes
- z.9781836649373_Code/kerascv/makelist.py 199 bytes
- z.9781836649373_Code/chatgpt_trading/extra_reading.txt 149 bytes
- z.9781836649373_Code/rnn_class/extra_reading.txt 126 bytes
- z.9781836649373_Code/stats/extra_reading.txt 110 bytes
- z.9781836649373_Code/numpy_class/table2.csv 85 bytes
- z.9781836649373_Code/matrix_calculus/extra_reading.txt 78 bytes
- z.9781836649373_Code/numpy_class/table1.csv 78 bytes
- z.9781836649373_Code/prophet/extra_reading.txt 76 bytes
- z.9781836649373_Code/tf2.0/fake_util.py 76 bytes
- z.9781836649373_Code/.gitignore 65 bytes
- z.9781836649373_Code/tf2.0/.gitignore 59 bytes
- z.9781836649373_Code/financial_engineering/go_here_instead.txt 56 bytes
- z.9781836649373_Code/calculus/extra_reading.txt 55 bytes
- z.9781836649373_Code/pytorch/.gitignore 43 bytes
- z.9781836649373_Code/ann_class2/__init__.py 0 bytes
- z.9781836649373_Code/ann_logistic_extra/__init__.py 0 bytes
- z.9781836649373_Code/hmm_class/__init__.py 0 bytes
- z.9781836649373_Code/rnn_class/__init__.py 0 bytes
- z.9781836649373_Code/unsupervised_class/__init__.py 0 bytes
- z.9781836649373_Code/unsupervised_class2/__init__.py 0 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via anywarmservice[AT]gmail.com. Remember to include the full url in your complaint.